Program Optimisation
Solutions of Homework 2

1. a) Let h(Dy) = m and h(Ds) = n.
e We show that A(D; x Dy) > m +n. Dy has achain L T dy C ... C d,
and Dy has a chain, L © dj C ... C d,. Then (L, 1) C (dy,L)C ... C
(dm, L) C (dm,dy) C ... C (dm, d),) is a chain in Dy x Dy of length m + n.
e Now we show that h(ID; x Dy) < m + n. First we show by induction that

(*) if (ao,bo) T ... C (a;b;) is any chain in Dy x Dy then
an,.a}| & (b, b} 2002

Now let (L,1) = (a1,by) = ... C (ag,br) be any chain in Dy X
D,. We have to show that & < m + n. Since h(D;) = m hence
H{L,a1,...,ax}] < m + 1. Similarly [{L,by,...,bt}] < n + 1. Hence
{L,a1,...;ax}t + [{L,b1,...,0}] < m+n+2 But from (*) we have
HLl,a1,...;ax} + [{L,b1,..., e} > k+2 Hence k+2 <m+n+2, ie.
k<m+n.

b) We show by induction on k that h(D;*) = k-h(D;). For k = 1 the result is clear.
Now suppose we have shown for some k that h(D,*) = k- h(ID;). From part
(a), h(D;"™) = h(D,") + (D). Hence we have h(D,**!) = k-h(Dy) 4+ h(Dy) =
(k+ 1)h(Dy).

c) Let |Dy| = m and h(Dy) = n. Let the elements of D be dy, ..., d,, such that if
d; T d; then i > j. (Le. we enumerate the elements in such a way that smaller
elements always occur after larger elements, while the order of incomparable
elements is not important. Such an enumeration can always be done for a finite
partial order.)

e We show that h([D; — Ds]) < mn. For this consider any chain
1L C fiC...C frin[D — Dy]. We show that & < mn. De-
fine elements xg,x1,...,2, € D™ as follows. xp = (L,..., 1), and
x; = (fi(d1), ..., fi(dy)) for 1 <i < k. Then clearly o C z1 C ... C zy is
a chain in Dy™. We know that h(Dy™) = mh(Dy) = mn. Hence k < mn.

e Now we show that h([D; — Ds]) > mn. Since h(Dy) = n we have a chain
L Ce C...C e, in Dy. Define functions gg, g1, - - -, gmn : D1 — Dy as in
the table.

9 g(d) g(d2) g(ds) 9(dm)
90 il il 1L il
g1 €1 1 1 1
[€9 1 1 1
Gn en L 1 . 1
Gn+1 €n el 1 - 1
In+2 €En €2
Gon en en 1 1
9on+1 €n en €1 1
92n+2 €n €n €2 1
9d3n en €n €n 1
Jmn €n €n T
Because of the chose enumeration of dy, ..., d,,, each g; is monotone, i.e.
gi € [Dy — D). Also it is clear that go C ¢1 C ... C gmn. Hence h([D; —
Dy]) > mn.

h(]D; — Dy]) = |Dy| - h(Dy) where [D; — Ds] is the set of monotone functions
f Dy — Dy, and |D4] is the cardinality of D,

2. The edge-effects defined in the lecture for computing available expressions as as
follows:

FA = A
[Pos(e)fA = Au{e}
[Neg@A = AU{e)
[R=¢]*A = (AU{e})\ Eaprg
[Ri = M[Ry];]FA = A\ Exprg,

[M[R:] = R2;]]ﬁA = A
To deal with load operations define the new set of expressions EX PR = Exprr U
{M[R]}. Now the sets A can contain expressions of the form M[R] to remember
load operations already performed. The edge-effects for the edges ;, Pos(e), Neg(e)
remain as before. The edge-effects for the remaining edges are changed as follows:

[R=¢]*!A = (AU{e})\ EXPRg
[Ri = M[Ry];FA = (AUM]J[Ry])\ EXPRp,
[M[R)] = Ry;]J*)A = A\ Mem

where Mem is the set of all expressions of the form M[R]. The explanation for the
given translation of store operations is that once we modify the memory at any
position, the value of any M[R] already computed may now be different because it
is possible that R points to the same memory location.

Transformation 1 in case of assignments (Abbildung 1) and conditions (Abbildung 2)
is as before.

But now transformation 1 also deals with load operations (Abbildung 3).

Transformation 2 now deals with ordinary expressions, as well as expressions of the

Neg(e)

Pos(Te)

Abbildung 2: Transformation 1 for conditions

form M[R] (Abbildung 4). Note that the set AJu] in Abbildung 4 may also have
expressions of the form M|[R)].

3. a) The required lattice is D = 2V with C=D (the ordering is the superset
relation).

b) For every edge k = (u, lab, v) we define [k]* = [lab]* which transforms the dead
variables at point v into dead variables at point u (backward propagation of
information, as for the analysis of live variables).

[I'D = D

[Pos(e)]*D = D\ Vars(e)

[Neg(e)]D = D\ Vars(e)

[rt=¢e]fD = (DU{z})\ Vars(e)

[R1 = M[RJ'D = (DU{R:})\ {R:}
[M[R,] = Ry;]* = D\ {Ry, Ry}

For a path 7 = ky...k, we have [r]* = [k]¥ o ... o [k.]* The set of dead
variables at a point u is D*[u] = {[7]*Vars | m : u —* stop}.
The constraints that we will use for the analysis are of the form D[stop] J Vars
and D[u] 3 [lab]*D[v] for every edge (u,lab,v) (recall that J=C).
To show the correctness of the above edge transformations, we show that
D*[u] = Vars \ L*[u]. For this we show that for any sets D = Vars \ L, for
any edge k = (_,lab,), if the edge transformation above gives [lab]*D = D
and if the edge transformation defined in the lecture for live variables gives
[lab]*L = L, then we must have D; = Vars\ L.
As example we show how to prove this for assignment statements. Assume

O

o O

O

Abbildung 3: Transformation 1 for loads

@ e € Alu]

O O

Abbildung 4: Transformation 2

Tyir) = M[R];

x = Tug);

that D = Vars \ L. Consider label lab of the form x = e;. The above edge
transformation for dead variables gives D; = (D U {z}) \ Vars(e). The edge
transformation given in the lecture for live variables gives L; = (L \ {z}) U

Vars(e). Hence we have Vars\ L1 = (Vars\ (L\ {z})) N (Vars\ Vars(e))
(Vars \ L) U {z}) N (Vars \ Vars(e)) = (D U {z}) N (Vars \ Vars(e))

(DU {x})\ Vars(e) = D;.

c) For real deadness analysis we use the following edge transformations:

[Fp = D
[Pos(e)] D = D\ Vars(e)
[Neg(e)| D = D\ Vars(e)
[xr=¢e]fD = (DU{z})\ (z € D)?0: Vars(e)

[R, = M[R,J;]*D
[M[R] = Ry;]* = D\ {Ri, Ry}

Correctness of this analysis is shown as in the previous part.

(D U {R1}> \ (Rl c D){?@ . {R2}

4. The result of doing the analysis of available expressions (Homework 1) is shown in

Abbildung 5.

Now for each expression we compute which variables contain its value. This is shown

in Abbildung 6.

Then we apply the transformation 4 of the lecture to obtain the CFG in Abbildung 7.

n
w
I
o

O0-0-0

I
=
z

404

OO0

S
5
[
&

O—
=
I
-

®
w
I
=
5

[

hS
)

= Rs;

0.0
Il
=

[AG] =1t;

i

Abbildung 5: Avoiding unnecessary computations

The modifications are in red color.
Next we compute the set of live variables at each point. This is shown in Abbilding 8

Then we apply transformation 3 to eliminate redundant assignments. The result
is shown in Figure 9. The result is satisfactory except that the redundant load
operations are not saved, and there are too many empty edges.

:
Ty = Ao+ 1-4;

T A+ 1i = (AL T
‘ Ry = M[A1];

O {Ag+1-i— {A1,T1}}
[To = Ao+ 1-j;

O {Ao+1-i— {A, T}, Ag +1-j — {To}}
‘AQ = Tb;
Q {Ao +1-i— {A1, T}, Ao+ 1-j — {A2, Ta}}
Ry = M[As];
{Ao+1-1— {A1, T}, Ao+ 1.7 — {A2,T2}}
‘ T3 = R1 > R2
{Ao+1-i— {A1, Th}, Ao+ 17— {A2,To}, R1 > Ra — {T3}}
NegTs \PosTg

@ (\) {Ao+1-i— {A,Th}, Ao +1-j — {A2, To}, R1 > Ry — {T3}}
{Ao+1-i—{A1, T}, Ao+ 15— {A2, To}, B > Ro — {Ts}} O {Ao+1-i—{A;,T1},Ao+1-5 — {A2,T2}, R1 > Ry — {T3}}
| Az = Tz;
O {Ao+1-i— {A1, T}, Ao+ 1-j — {As, A3, T2}, R > Ro — {T3}}
| t = M[As];
() {Ao+1-i— {A1, Ty}, Ag+1-5 — {As, Ag, T}, Ry > Ro — {T3}}
| 5
(D) {Ap+1-i—{A), i}, Ag+1-j — {As, A3, To}, Ry > Rs — {T5}}
‘ Ay = To;
{AU+1-i—>{A1,T1},AU+1-j—>{AQ,Ag,A4,T2},R1>R2—>{T3}}
(O {Ao+1-i— {A1,T1}, A +1-j — {A2, A3, As, To}, Ri > Ra — {T3}}
‘A5=T1;
{Ao+1-i— {A1, A5, T1}, Ao+ 1-j — {A2, A3, Ay, To}, R1 > R — {T3}}
R3 = M[As];
{Ao+1-i— {A1, A5, Th}, Ao+ 1-j — {A2, A3, Ay, To}, R1 > Ro — {T3}}
M[A4] = Rs;
{Ao+1-i— {A1, A5, Th}, Ao+ 1-j — {A2, Az, Ag, T2}, R1 > R2 — {T3}}

{Ao+1-i— {A1, A5, Th}, Ao+ 1-j — {A2, Az, Ag, T2}, R1 > R2 — {T3}}

Ae = Ty;
é{Ao +1-1— {A1,A5,A6,T1}, Ao+ 175 — {A2, A3, Ay, To}, R1 > Ra — {T3}}
As] = t;

{Ao+1-i— {A1,As5, A6, T1}, Ao +1-j — {A2, A3, Ay, T2}, R1 > R — {T3}}

Abbildung 6: Computation of which variables contain which value.

O

| Ay =Ty;
O

[Ry = M[T}]

O
| Ay =T
QRQ — M[Ty);
e
T3 = R1 > Ra
€gls \POSTg
of
O
| Az =To;
O
‘ t= M[Tg]
Q
T
Ay =Ty
T
O
| A5 =Ty:
O
Rs = M[T1]

Abbildung 7: Transformation 4 for eliminating redundant moves

{Ao, 4,1}
T =Ag+1-14;

{T1, Ao, 5}
Ay =T,
O{T17A0=j}

‘ Ry = M[T1];
O{leRl-,Aij}
| T2 = Ao +1-j;

O{T17T27R1}
‘A2 = Ty;
{T1,T>,R:1}
Ry = MIT.J;
{T1, T2, R1, R2}

T3 = R1 > R
{T1, T2, T3}

NegTs S\ PosTs
Q

O {11, T>}

| Az =Ty;
O {Tl, T2}
[TZ]
(\) {T1 t, TQ}

OIRYS!
A4 —T2
{Tl,t T2}

O{Tl,t T}

As = Tu;
{T1,t, T2}
R3 = M[T1];
{T1,t, T2, R3}
M[Tg] = R3;
{T,t}
{T1,t}
A = T1;
{Tl'rt}

Tl] =1t

Abbildung 8: Computation of live variables

2

®

Q
e\:ﬁ
4

3

&

—0-0

O

OO0
é
5

OO

=
w

I
=
s

S

| = Rs;

E
Il

Abbildung 9: Transformation 3 for eliminating redundant assignments

