Program Optimisation Solutions of Homework 3

1. a) The elements of the partial order are \oplus, \ominus and T. We intend \oplus to describe positive values, and \ominus to describe negative values. The ordering is: $\oplus \sqsubset T$ and $\ominus \sqsubset T$.
b) The description relation Δ is defined as follows.

$$
\begin{aligned}
& x \Delta \oplus \text { iff } x \geq 0 \\
& x \Delta \ominus \text { iff } x<0 \\
& x \Delta \top \text { iff } x \in \mathbb{Z}
\end{aligned}
$$

We have chosen \oplus to describe positive values as well as 0 , and \ominus to describe strictly negative values. There are also other possibilities.
c) The abstract operator t^{\sharp} is defined as

$$
a+{ }^{\sharp} b= \begin{cases}\oplus & \text { if } a=\oplus \text { and } b=\oplus \\ \ominus & \text { if } a=\ominus \text { and } b=\ominus \\ \top & \text { otherwise }\end{cases}
$$

The abstract operator $-\sharp$ is defined as

$$
a-^{\sharp} b= \begin{cases}\oplus & \text { if } a=\oplus \text { and } b=\ominus \\ \ominus & \text { if } a=\ominus \text { and } b=\oplus \\ \top & \text { otherwise }\end{cases}
$$

We similarly define abstract operators corresponding to other concrete operators.
d) We show that t^{\sharp} respects Δ. The arguments for the other operators are similar. We need to show that if $x \Delta a$ and $y \Delta b$ then $x+y \Delta a+^{\sharp} b$. If $a=\oplus$ and $b=\oplus$ then $x \geq 0$ and $y \geq 0$ hence $x+y \geq 0$ so that $x+y \Delta \oplus=a+{ }^{\sharp} b$. If $a=\ominus$ and $b=\ominus$ then $x<0$ and $y<0$ hence $x+y<0$ so that $x+y \Delta \ominus=a+^{\sharp} b$. In all other cases, trivially we have $x+y \Delta T=a+^{\sharp} b$.
e) We consider edge transformations for the condition $\operatorname{Pos}\left(e_{1}==e_{2}\right)$. Other conditions are treated similarly.

$$
\llbracket \operatorname{Pos}\left(e_{1}==e_{2}\right) \rrbracket^{\sharp} D= \begin{cases}\perp & \text { if } \llbracket e_{1} \rrbracket^{\sharp} D=\oplus \text { and } \llbracket e_{2} \rrbracket^{\sharp} D=\ominus \\ \perp & \text { if } \llbracket e_{1} \rrbracket^{\sharp} D=\ominus \text { and } \llbracket e_{2} \rrbracket^{\sharp} D=\oplus \\ D & \text { otherwise }\end{cases}
$$

To show its correctness we assume $(\rho, \mu) \Delta D, \llbracket \operatorname{Pos}\left(e_{1}==e_{2}\right) \rrbracket(\rho, \mu)=$ $\left(\rho_{1}, \mu_{1}\right), \llbracket \operatorname{Pos}\left(e_{1}==e_{2}\right) \rrbracket^{\sharp} D=D_{1}$, and show that $\left(\rho_{1}, \mu_{1}\right) \Delta D_{1}$. Since

Abbildung 1: Program for which interval analysis without widening does not terminate
$\llbracket \operatorname{Pos}\left(e_{1}==e_{2}\right) \rrbracket(\rho, \mu)=\left(\rho_{1}, \mu_{1}\right)$ it means that the condition $\operatorname{Pos}\left(e_{1}==e_{2}\right)$ succeeds for the state (ρ, μ), i.e. $\llbracket e_{1} \rrbracket(\rho, \mu)=\llbracket e_{2} \rrbracket(\rho, \mu)$. We have $\left(\rho_{1}, \mu_{1}\right)=$ (ρ, μ). From above definition we must have $D_{1}=D$. Hence $\left(\rho_{1}, \mu_{1}\right) \Delta D_{1}$.
2. The abstract multiplication for intervals is defined as $\left[l_{1}, u_{1}\right] *^{\sharp}\left[l_{2}, u_{2}\right]=[a, b]$ where $a=l_{1} l_{2} \sqcap l_{1} u_{2} \sqcap u_{1} l_{2} \sqcap u_{1} u_{2}$ and $b=l_{1} l_{2} \sqcup l_{1} u_{2} \sqcup u_{1} l_{2} \sqcup u_{1} u_{2}$. Now suppose $l_{1} \leq z_{1} \leq u_{1}$ and $l_{2} \leq z_{2} \leq u_{2}$. We have to show that $a \leq z_{1} z_{2} \leq b$. We do case analysis on the ordering between the values $l_{1}, u_{1}, l_{2}, u_{2}, 0$ and show that in each case we have $a \leq z_{1} z_{2} \leq b$.
3. We define

$$
\begin{aligned}
& !\sharp[l, u]= \begin{cases}{[1,1]} & \text { if } l=0 \text { and } u=0 \\
{[0,0]} & \text { if } 0<l \text { or } u<0 \\
{[0,1]} & \text { otherwise }\end{cases} \\
& {\left[l_{1}, u_{1}\right] \not \neq^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}{[1,1]} & \text { if } u_{1}<l_{2} \text { or } u_{2}<l_{1} \\
{[0,0]} & \text { if } l_{1}=u_{1}=l_{2}=u_{2} \\
{[0,1]} & \text { otherwise }\end{cases} }
\end{aligned}
$$

4. For the example program in Abbildung 1, interval analysis without widening proceeds as follows, and does not terminate:

	1					2				3			
	l_{i}	u_{i}	l_{j}	u_{j}	l_{i}	u_{i}	l_{j}	u_{j}	l_{i}	u_{i}	l_{j}	u_{j}	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	
1	0	0	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	\ldots
2	0	0	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	
3	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	3	3	$-\infty$	$+\infty$	

