Program Optimisation Solutions of Homework 3

- 1. a) The elements of the partial order are \oplus , \ominus and \top . We intend \oplus to describe positive values, and \ominus to describe negative values. The ordering is: $\oplus \sqsubset \top$ and $\ominus \sqsubset \top$.
 - b) The description relation Δ is defined as follows.

$$\begin{array}{l} x\Delta \oplus \mbox{ iff } x \geq 0 \\ x\Delta \ominus \mbox{ iff } x < 0 \\ x\Delta \top \mbox{ iff } x \in \mathbb{Z} \end{array}$$

We have chosen \oplus to describe positive values as well as 0, and \ominus to describe strictly negative values. There are also other possibilities.

c) The abstract operator $+^{\sharp}$ is defined as

$$a + {}^{\sharp} b = \begin{cases} \oplus & \text{if } a = \oplus \text{ and } b = \oplus \\ \ominus & \text{if } a = \ominus \text{ and } b = \ominus \\ \top & \text{otherwise} \end{cases}$$

The abstract operator $-^{\sharp}$ is defined as

$$a - {}^{\sharp} b = \begin{cases} \oplus & \text{if } a = \oplus \text{ and } b = \oplus \\ \oplus & \text{if } a = \oplus \text{ and } b = \oplus \\ \top & \text{otherwise} \end{cases}$$

We similarly define abstract operators corresponding to other concrete operators.

- d) We show that $+^{\sharp}$ respects Δ . The arguments for the other operators are similar. We need to show that if $x\Delta a$ and $y\Delta b$ then $x + y\Delta a + {}^{\sharp} b$. If $a = \oplus$ and $b = \oplus$ then $x \ge 0$ and $y \ge 0$ hence $x + y \ge 0$ so that $x + y\Delta \oplus = a + {}^{\sharp} b$. If $a = \ominus$ and $b = \ominus$ then x < 0 and y < 0 hence x + y < 0 so that $x + y\Delta \ominus = a + {}^{\sharp} b$. In all other cases, trivially we have $x + y\Delta \top = a + {}^{\sharp} b$.
- e) We consider edge transformations for the condition $Pos(e_1 == e_2)$. Other conditions are treated similarly.

$$\llbracket Pos(e_1 == e_2) \rrbracket^{\sharp} D = \begin{cases} \perp & \text{if } \llbracket e_1 \rrbracket^{\sharp} D = \bigoplus \text{ and } \llbracket e_2 \rrbracket^{\sharp} D = \bigoplus \\ \perp & \text{if } \llbracket e_1 \rrbracket^{\sharp} D = \bigoplus \text{ and } \llbracket e_2 \rrbracket^{\sharp} D = \bigoplus \\ D & \text{otherwise} \end{cases}$$

To show its correctness we assume $(\rho, \mu)\Delta D$, $[[Pos(e_1 == e_2)]](\rho, \mu) = (\rho_1, \mu_1)$, $[[Pos(e_1 == e_2)]^{\sharp}D = D_1$, and show that $(\rho_1, \mu_1)\Delta D_1$. Since

Abbildung 1: Program for which interval analysis without widening does not terminate

 $\llbracket Pos(e_1 == e_2) \rrbracket (\rho, \mu) = (\rho_1, \mu_1)$ it means that the condition $Pos(e_1 == e_2)$ succeeds for the state (ρ, μ) , i.e. $\llbracket e_1 \rrbracket (\rho, \mu) = \llbracket e_2 \rrbracket (\rho, \mu)$. We have $(\rho_1, \mu_1) = (\rho, \mu)$. From above definition we must have $D_1 = D$. Hence $(\rho_1, \mu_1) \Delta D_1$.

- 2. The abstract multiplication for intervals is defined as $[l_1, u_1] *^{\sharp} [l_2, u_2] = [a, b]$ where $a = l_1 l_2 \Box l_1 u_2 \Box u_1 l_2 \Box u_1 u_2$ and $b = l_1 l_2 \sqcup l_1 u_2 \sqcup u_1 l_2 \sqcup u_1 u_2$. Now suppose $l_1 \leq z_1 \leq u_1$ and $l_2 \leq z_2 \leq u_2$. We have to show that $a \leq z_1 z_2 \leq b$. We do case analysis on the ordering between the values $l_1, u_1, l_2, u_2, 0$ and show that in each case we have $a \leq z_1 z_2 \leq b$.
- 3. We define

$$!^{\sharp}[l, u] = \begin{cases} [1, 1] & \text{if } l = 0 \text{ and } u = 0\\ [0, 0] & \text{if } 0 < l \text{ or } u < 0\\ [0, 1] & \text{otherwise} \end{cases}$$

$$[l_1, u_1] \neq^{\sharp} [l_2, u_2] = \begin{cases} [1, 1] & \text{if } u_1 < l_2 \text{ or } u_2 < l_1 \\ [0, 0] & \text{if } l_1 = u_1 = l_2 = u_2 \\ [0, 1] & \text{otherwise} \end{cases}$$

4. For the example program in Abbildung 1, interval analysis without widening proceeds as follows, and does not terminate:

	1					2				3			
	l_i	u_i	l_j	u_j	l_i	u_i	l_j	u_j	l_i	u_i	l_j	u_j	
0	$-\infty$	$+\infty$	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	
1	0	0	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	
2	0	0	$-\infty$	$+\infty$	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	
3	1	1	$-\infty$	$+\infty$	2	2	$-\infty$	$+\infty$	3	3	$-\infty$	$+\infty$	