## Program Optimisation Solutions of Homework 5

1. The CFG of the given program is in Abbildung 1.



Abbildung 1: CFG of the given program

We perform loop rotation and introduce registers  $T_e$  for expressions e. The result is shown in Abbildung 2.

We are interested in the set of expressions  $Expr = \{a+2\}$ . The set of available and very busy expressions at each program point is as below:

|   | 4 5 1            | 40[ ]            |
|---|------------------|------------------|
| u | $\mathcal{A}[u]$ | $\mathcal{B}[u]$ |
| 9 | {}               | {}               |
| 8 | ${a+2}$          | {}               |
| 7 | ${a+2}$          | {}               |
| 6 | ${a+2}$          | {}               |
| 5 | ${a+2}$          | {}               |
| 4 | ${a+2}$          | {}               |
| 3 | ${a+2}$          | {}               |
| 2 | {}               | ${a+2}$          |
| 1 | {}               | {}               |
| 0 | {}               | {}               |



Abbildung 2: After loop rotations

We apply Transformation 6.1 and Transformation 6.2 of the lecture to obtain the CFG in Abbildung 3.

In case the statement if (j>i) ... is at the beginning of the body of the loop then instead of Abbildung 2 we have Abbildung 4.

Then we may apply Transformation 7 to obtain the CFG in Abbildung 5.

Then as before we can do the loop invariant computation.

- 2. a) Let the program be loop dominated. Let I be the set of the unique entry points of the loops in the program. By definition of I, I contains a point from every loop (namely the entry point of the loop). Hence by definition of loop separators, I is a loop separator for the program.
  - b) Transformation of the loop of the example program for interval-analysis into a do-while-loop leads to the program in Abbildung 6.
  - c) Interval analysis without narrowing on this program works as follows. We use the loop separator  $I = \{2\}$ . So widening is applied only at point 2.



Abbildung 3: After transformations 6.1 and 6.2



Abbildung 4: CFG with 'if-break' statement at the beginning of loop



Abbildung 5: After transformation 7

|   | 1         |           | 2         |           | 3  |     |
|---|-----------|-----------|-----------|-----------|----|-----|
|   | l         | u         | l         | u         | l  | u   |
| 0 | $-\infty$ | $+\infty$ | $-\infty$ | $+\infty$ |    |     |
| 1 | 0         | 0         | 0         | 0         |    |     |
| 2 | 0         | 0         | 0         | $+\infty$ |    |     |
| 3 | 0         | 0         | 0         | 41        |    |     |
| 4 | 0         | 0         | 0         | 41        | di | ito |
| 5 | 0         | 0         | 0         | 41        |    |     |
| 6 | 1         | 1         | 1         | 42        |    |     |
| 7 | 1         | 1         | 1         | 41        |    |     |
| 8 | 上         |           | 42        | $+\infty$ |    |     |
| 9 | $\perp$   |           | 42        | 42        |    |     |



Abbildung 6: After loop rotation