Program Optimisation Solutions of Homework 8

1. Here is the CFG for the optimised version of the version swap from the lecture, together withe the live variables at each program point. The program uses 8 variables $A_{0}, i, j, A_{1}, A_{2}, R_{1}, R_{2}$ and t.

The corresponding interval graph is shown in Abbildung 1. By looking at it, we can see that four registers are sufficient. We call these registers red, blue, green and

The allocation of registers is also shown in the same figure using colors. We can check that at any program point, all intervals have distinct colors (registers).
2. a) Suppose G has no loop. We show that any connected component G^{\prime} of G can be colored using at most 2 colors. Since G^{\prime} is connected and has no loops, it is a tree. Let $V_{0}=\{v\}$ where v is the root node. For $i>0$ let V_{i} be the set of successors of node in V_{i}. We color each node in V_{i} as red if i is even, and as blue if i is odd.
b) Suppose each node in G has degree at most 2. We show that each connected component G^{\prime} of G can be colored using at most 3 colors. If G^{\prime} has no loops

Abbildung 1: Interval graph and allocation of registers
then by the previous part, we know that G^{\prime} can be colored using at most 2 colors.
If G^{\prime} has a loop then consider a minimal loop in G^{\prime}. I.e. we consider pairwise distinct nodes $v_{0}, v_{1}, \ldots, v_{n}$ for some $n \geq 1$ such that v_{i} is neighbor of v_{i+1} for $0 \leq i \leq n-1$, and v_{n} is a neighbor of v_{0}.
We claim that G^{\prime} has only these $n+1$ nodes and $n+1$ edges. Otherwise some v_{i} would be a neighbor of some node v, where $v \neq v_{j}$ for any j. But then v_{i} would have degree at least 3 leading to contradiction.
Now for $0 \leq i \leq n-1$, if i is even then we color v_{i} as red, otherwise we color v_{i} as blue. The last node v_{n} is colored green.
c) If G has a k-clique, then we have k distinct nodes v_{1}, \ldots, v_{k} such that for any $1 \leq i, j \leq k$ with $i \neq j, v_{i}$ and v_{j} are neighbors. Hence v_{i} and v_{j} should be colored with different colors. In other words, each of the k nodes should have a different color. Hence we required at least k colors for coloring this graph.

