
Program Optimisation
Solutions of Homework 9

1. We have the following set of operators and constants.

BinOp={:,+}
UnOp ={M}
Leaf ={int, []}

We treat non-terminals (“registers”) as leaves.

a) The set of all lists (inner nodes: “:”) of int’s with an even number of elements
(in particular the leftmost node is “[]”) is generated by the following grammar:

R→[]
R→(R : int) : int

b) The set all trees in which an M always has, directly below itself, a “+”, is
generated by the following grammar:

R→[]
R→int
R→R : R
R→R +R
R→M(R +R)

c) The set of all trees in which an M never has (directly or indirectly) below itself
a “:” is generated by the following grammar:

R→[]
R→int
R→R : R
R→R +R
R→M(S)
S→[]
S→int
S→S + S
S→M(S)

2. a) G contains the following rules:

R→a(A,B)
A→b(A)
A→c(B)
B→d

1



We have:

R⇒ a(A,B)⇒ a(c(B), B)⇒ a(c(d), B)⇒ a(c(d), d)

Hence we have a(c(d), d) ∈ L(G,R) so that L(G,R) 6= ∅.
b) Let G be the given grammar. We iteratively compute a set N of non-terminals

such that each non-terminal N ∈ N has the property that L(G,N) 6= ∅.
Initially we set N = ∅. At any point during the iteration, if there is a rule
A → α in G such that all non-terminals occurring in α have already been
added to N then we add the non-terminal A to N (if A is not already present
in N ). We keep adding new non-terminals to N in this way till no more non-
terminals can be added. In the end R ∈ N iff L(G,R) 6= ∅. This algorithm
runs in polynomial time. By using clever data structures we can also do it in
linear time. We don’t detail this here.

3. If α is a term (built from terminals as well as non-terminals) then we define the
depth of α as:

dp(a)=1 (a is a constant (i.e. zero-ary))
dp(A)=0 (A is a non-terminal)

dp(f(α1, . . . , αn))=1 +max{dp(α1), . . . , dp(αn)}

Define the size n of a grammar as n =
∑

A→α∈G dp(α). If A is a non-terminal and t
is a term (consisting only of terminal symbols) such that A⇒∗ t then we can label
positions in the term t with rules that were used in the corresponding derivation.
For example in the exercise 2(a) we have R⇒∗ a(c(d), d) and we can label the term
a(c(d), d) as in Abbildung 1.

a

c

d

d

R → a(A,B)

A→ c(B)
B → d

B → d

Abbildung 1: Labeling a term according to the derivation

a) Now if the tree has a path on which two distinct positions are labeled by the
same rule A → α then we can obtain a shorter tree as shown in Abbildung 2.
Hence whenever we have R⇒∗ t where t contains only terminals then we also
have R⇒∗ t′ where t′ contains only terminals and in the labeling corresponding
to the derivation of t′ from R, no rule occurs twice on the same path. Then we
can check that dp(t′) ≤ n.

b) • Suppose L(G,R) is infinite. Then L(G,R) has terms of arbitrarily large
depth. Hence there is also a term t such that n < dp(t). If dp(t) ≤ 2n then
we are done. If dp(t) > 2n then by using contractions as in Abbildung 2,
we can get a term t′ ∈ L(G,R) such that n < dp(t′) ≤ 2n.



A→ α

A→ α A→ α

Abbildung 2:

• Suppose there is some t ∈ L(G,R) with n < dp(t) ≤ 2n. Since n < dp(t)
some path in the labeling corresponding to the derivation of t has two
occurrences of the same rule (by arguments as in part 3(a)). Then by
using steps as in Abbildung 3 we can terms in L(G,R) of larger and larger
depth.

A→ α

A→ α

A→ α

A→ α

A→ α

Abbildung 3:


