Program Optimisation
Solutions of Homework 9

1. We have the following set of operators and constants.

BinOp={:, +}
UnOp ={M}
Leaf ={int,[|}

We treat non-terminals (“registers”) as leaves.

a) The set of all lists (inner nodes: “:”) of int’s with an even number of elements
(in particular the leftmost node is “[]”) is generated by the following grammar:

R—]]
R—(R :int) :int

b) The set all trees in which an M always has, directly below itself, a “+”, is
generated by the following grammar:

R—|]

R—int
R—R:R
R—R+R
R—M(R+ R)

c) The set of all trees in which an M never has (directly or indirectly) below itself
a " is generated by the following grammar:

R—|]
R—int
R—R:R
R—R+ R
R—M(S)
S—|]
S—int
S—S+S
S—M(S)

2. a) G contains the following rules:
R—a(A, B)
A—b(A)
A—c(B)
B—d



We have:
R = a(A, B) = a(c(B), B) = a(c(d), B) = a(c(d), d)

Hence we have a(c(d),d) € L(G, R) so that L(G, R) # 0.

b) Let G be the given grammar. We iteratively compute a set N of non-terminals
such that each non-terminal N € N has the property that L(G,N) # 0.
Initially we set N = (). At any point during the iteration, if there is a rule
A — «a in G such that all non-terminals occurring in « have already been
added to N then we add the non-terminal A to N (if A is not already present
in V). We keep adding new non-terminals to A in this way till no more non-
terminals can be added. In the end R € N iff L(G, R) # (. This algorithm
runs in polynomial time. By using clever data structures we can also do it in
linear time. We don’t detail this here.

3. If a is a term (built from terminals as well as non-terminals) then we define the
depth of « as:

dp(a)=1 (a is a constant (i.e. zero-ary))
dp(A)=0 (A is a non-terminal)
dp(f(ai,...,an))=1+maz{dp(a),...,dp(ay,)}

Define the size n of a grammar asn =, .. dp(a). If Ais a non-terminal and ¢
is a term (consisting only of terminal symbols) such that A =* ¢ then we can label
positions in the term ¢ with rules that were used in the corresponding derivation.
For example in the exercise 2(a) we have R =* a(c(d), d) and we can label the term
a(ce(d),d) as in Abbildung 1.

R — a(A, B)
a
\ B—d
Ao /
c d
4 B—d

Abbildung 1: Labeling a term according to the derivation

a) Now if the tree has a path on which two distinct positions are labeled by the
same rule A — « then we can obtain a shorter tree as shown in Abbildung 2.
Hence whenever we have R =* t where ¢ contains only terminals then we also
have R =* ' where t’ contains only terminals and in the labeling corresponding
to the derivation of ¢’ from R, no rule occurs twice on the same path. Then we
can check that dp(t') < n.

b) e Suppose L(G, R) is infinite. Then L(G, R) has terms of arbitrarily large

depth. Hence there is also a term t such that n < dp(t). If dp(t) < 2n then

we are done. If dp(t) > 2n then by using contractions as in Abbildung 2,
we can get a term t' € L(G, R) such that n < dp(t') < 2n.



A— «a A a
A [eY

Abbildung 2:

e Suppose there is some ¢t € L(G, R) with n < dp(t) < 2n. Since n < dp(t)
some path in the labeling corresponding to the derivation of ¢ has two
occurrences of the same rule (by arguments as in part 3(a)). Then by

using steps as in Abbildung 3 we can terms in L(G, R) of larger and larger
depth.

Abbildung 3:




