An idea: do iterative computation of reachable states.

An idea: do iterative computation of reachable states.

An idea: do iterative computation of reachable states.

$\mathcal{V}[0]$	\emptyset	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	\emptyset	$\{0\} \times \mathbb{Z}$
$\mathcal{V}[2]$	\emptyset	
$\mathcal{V}[3]$	\emptyset	
$\mathcal{V}[4]$	\emptyset	

An idea: do iterative computation of reachable states.

$\mathcal{V}[0]$	\emptyset	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	\emptyset	$\{0\} \times \mathbb{Z}$
$\mathcal{V}[2]$	\emptyset	$\{0\} \times \mathbb{Z}$
$\mathcal{V}[3]$	\emptyset	
$\mathcal{V}[4]$	\emptyset	

An idea: do iterative computation of reachable states.

An idea: do iterative computation of reachable states.

$$
\begin{array}{llll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0,1\} \times \mathbb{Z} \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \\
\mathcal{V}[4] & \emptyset & &
\end{array}
$$

An idea: do iterative computation of reachable states.

$$
\begin{array}{llll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0,1\} \times \mathbb{Z} \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \{0,1\} \times \mathbb{Z} \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \\
\mathcal{V}[4] & \emptyset & &
\end{array}
$$

An idea: do iterative computation of reachable states.

$\mathcal{V}[0]$	\emptyset	$\mathbb{Z} \times \mathbb{Z}$	
$\mathcal{V}[1]$	\emptyset	$\{0\} \times \mathbb{Z}$	$\{0,1\} \times \mathbb{Z}$
$\mathcal{V}[2]$	\emptyset	$\{0\} \times \mathbb{Z}$	$\{0,1\} \times \mathbb{Z}$
$\mathcal{V}[3]$	\emptyset	$\{(0,0)\}$	$\{(0,0),(1,2)\}$
$\mathcal{V}[4]$	\emptyset		

An idea: do iterative computation of reachable states.

Problem: too many iterations, infinite loops.
Solution: approximate computation of possible states.

Problem: too many iterations, infinite loops.
Solution: approximate computation of possible states.

Interpretation of our result: the values of i at node 1 is included in \mathbb{Z} the values of i at node 2 is included in \mathbb{Z}^{+}
This information we obtain is accurate.

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

We require an ordering \sqsubseteq on the elements of this domain.
$\emptyset \sqsubseteq \mathbb{Z}^{-} \quad \emptyset \sqsubseteq \mathbb{Z}^{+} \quad \mathbb{Z}^{-} \sqsubseteq \mathbb{Z} \quad \mathbb{Z}^{+} \sqsubseteq \mathbb{Z}$
Read $x \sqsubseteq y$ as " y is imprecise information compared to x ".

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

We require an ordering \sqsubseteq on the elements of this domain.
$\emptyset \sqsubseteq \mathbb{Z}^{-} \quad \emptyset \sqsubseteq \mathbb{Z}^{+} \quad \mathbb{Z}^{-} \sqsubseteq \mathbb{Z} \quad \mathbb{Z}^{+} \sqsubseteq \mathbb{Z}$
Read $x \sqsubseteq y$ as " y is imprecise information compared to x ".

We further require operations like least upper bounds.

$$
\mathbb{Z}^{-} \sqcup \mathbb{Z}^{+}=\mathbb{Z}
$$

A digression: complete lattices

Recall: a set \mathbb{D} with relation \sqsubseteq is a partial order if the following conditions hold for all $x, y, z \in \mathbb{D}$.

- Reflexivity: $x \sqsubseteq x$.
- Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ then $x=y$.
- Transitivity: if $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$.

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.
$d \in \mathbb{D}$ is called least upper bound of $X \subseteq \mathbb{D}$ if

- d is an upper bound of X
- $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of X

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.
$d \in \mathbb{D}$ is called least upper bound of $X \subseteq \mathbb{D}$ if

- d is an upper bound of X
- $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of X

A partial order $(\mathbb{D}, \sqsubseteq)$ is called a complete lattice if every $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X$.

We write $x \sqcup y$ for $\bigsqcup\{x, y\}$.

For $\left(2^{\mathcal{S}}, \subseteq\right)$ we have $\bigsqcup X=\bigcup X$.

Some complete lattices.

$$
\begin{aligned}
& \mathbb{Z}^{-}=\{x \in \mathbb{Z} \mid x<0\} \\
& \mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x \geq 0\}
\end{aligned}
$$

An infinite complete lattice : $\left(2^{\mathbb{Z}}, \subseteq\right)$.

Every complete lattice has

- a top element: $\top=\bigsqcup \mathbb{D}$
- a bottom element: $\perp=\bigsqcup \emptyset$

Further every $X \subseteq \mathbb{D}$ has a greatest lower bound $\sqcap X$.
For $\left(2^{\mathcal{S}}, \subseteq\right)$ we have $\Pi X=\bigcap X$.
Consider the set of lower bounds of X :

$$
L=\{l \in \mathbb{D} \mid \forall x \in X, l \leq x\}
$$

and define

$$
g=\bigsqcup L
$$

Claim: g is the greatest lower bound of X.

g is a lower bound of X :

Consider any $x \in X$.
$l \leq x$ for all $l \in L$, i.e. x is an upper bound of L. Hence $g=\bigsqcup L \sqsubseteq x$.
g is the greatest lower bound of X :
Let l be any other lower bound of X.
(2)

Then $l \in L$.
Hence $l \sqsubseteq \bigsqcup L=g$.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x+1$ is monotone.
Note: (\mathbb{Z}, \leq) is not a complete lattice.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x+1$ is monotone.
Note: (\mathbb{Z}, \leq) is not a complete lattice.

The transformations induced by the program edges are monotone:
Recall: $\llbracket l \rrbracket \rrbracket^{\sharp}: 2^{\mathcal{S}} \rightarrow 2^{\mathcal{S}}$
$\llbracket l \rrbracket^{\sharp} V=\{\llbracket l \rrbracket \rho \mid \rho \in V$ and $\llbracket l \rrbracket$ is defined for $\rho\}$. Hence if $V_{1} \subseteq V_{2}$ then $\llbracket l \rrbracket^{\sharp} V_{1} \subseteq \llbracket l \rrbracket^{\sharp} V_{2}$.

Some facts:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $g: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotone then the composition $g \circ f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$ is monotone.

Some facts:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $g: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotone then the composition $g \circ f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$ is monotone.

If \mathbb{D}_{2} is a complete lattice then the set $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotone functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is a complete lattice,
where $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all $x \in \mathbb{D}_{1}$.
For $F \subseteq\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ we have

$$
\bigsqcup F=f \text { with } f(x)=\bigsqcup\{g(x) \mid g \in F\}
$$

For our program analysis problem, we want the least solution of the constraint system

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq \mathcal{S} & \text { (0 is the start node) } \\
\mathcal{V}[v] \supseteq \llbracket l \rrbracket^{\sharp} \mathcal{V}[u] & \text { for every edge }(u, l, v) .
\end{array}
$$

We have the domain $\mathbb{D}=2^{\mathcal{S}}$. Choose a variable for each set $\mathcal{V}[v]$.
We obtain a constraint system of the form

$$
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \quad(1 \leq i \leq n)
$$

Example

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq & \mathcal{S} \\
\mathcal{V}[1] \supseteq & \llbracket i=0 ; \rrbracket \mathcal{V}[0] \\
\mathcal{V}[1] \supseteq & \llbracket i=i+1 ; \rrbracket \mathcal{V}[3] \\
\mathcal{V}[2] \supseteq & \llbracket i \leq 10 \rrbracket \mathcal{V}[1] \\
\mathcal{V}[3] \supseteq & \llbracket j=2 * i ; \rrbracket \mathcal{V}[2] \\
\mathcal{V}[4] \supseteq & \llbracket i>10 \rrbracket \mathcal{V}[1]
\end{array}
$$

Example

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq & \mathcal{S} \\
\mathcal{V}[1] \supseteq & \llbracket i=0 ; \mathbb{1}[0] \\
\mathcal{V}[1] \supseteq \llbracket i=i+1 ; \rrbracket \mathcal{V}[3] \\
\mathcal{V}[2] \supseteq \llbracket i \leq 10 \rrbracket \mathcal{V}[1] \\
\mathcal{V}[3] \supseteq \llbracket j=2 * i] \mathcal{V}[2] \\
\mathcal{V}[4] \supseteq \llbracket i>10 \rrbracket \mathcal{V}[1]
\end{array}
$$

Transforms to ...

Example

Since \mathbb{D} is a lattice, \mathbb{D}^{n} is also a lattice where

$$
\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \text { iff } d_{i} \sqsubseteq d_{i}^{\prime} \text { for } 1 \leq i \leq n
$$

The functions $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotone.

Define $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ as

$$
F(y)=\left(f_{1}(y), \ldots, f_{n}(y)\right) \text { where } y=\left(x_{1}, \ldots, x_{n}\right)
$$

F is also monotone.
We need least solution of $y \sqsupseteq F(y)$.

Idea: use iteration
Start with the least element \perp and compute the sequence $\perp, F(\perp), F^{2}(\perp), F^{3}(\perp), \ldots$

Do we always reach the least solution in this way?

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

$$
\begin{array}{|c|c|c|c|c|}
\hline x & \perp & \perp & \top & \\
y & \perp & \perp & \perp & \\
z & \perp & \top & \top & \\
\hline
\end{array}
$$

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

$$
\begin{array}{|c|c|c|c|c|}
\hline x & \perp & \perp & \top & \top \\
y & \perp & \perp & \perp & \perp \\
z & \perp & \top & \top & \top \\
\hline
\end{array}
$$

We have $F^{2}(\perp)=F^{3}(\perp)$.

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

By induction:
(1) Clearly $\perp \sqsubseteq F(\perp)$.
(2) Further if $F^{i}(\perp) \sqsubseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \sqsubseteq F^{i+2}(\perp)$

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.
(2) Further if $F^{i}(\perp) \sqsubseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \sqsubseteq F^{i+2}(\perp)$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.
(2) Further if $F^{i}(\perp) \sqsubseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \sqsubseteq F^{i+2}(\perp)$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Is it also the least solution of $F(x) \sqsubseteq x$?

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.
(2) Further if $F^{i}(\perp) \sqsubseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \sqsubseteq F^{i+2}(\perp)$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k
then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Is it also the least solution of $F(x) \sqsubseteq x$?

Yes ...

Claim: If a is a solution of $F(x) \sqsubseteq x$ then $F^{k}(\perp) \sqsubseteq a$ for all k.
By induction: Clearly $\perp \sqsubseteq a$
Further if $F^{k}(\perp) \sqsubseteq a$ then by monotonicity we have $F^{k+1}(\perp) \sqsubseteq F(a) \sqsubseteq a$.

Claim: If a is a solution of $F(x) \sqsubseteq x$ then $F^{k}(\perp) \sqsubseteq a$ for all k.
By induction: Clearly $\perp \sqsubseteq a$
Further if $F^{k}(\perp) \sqsubseteq a$ then by monotonicity we have $F^{k+1}(\perp) \sqsubseteq F(a) \sqsubseteq a$.

Hence if $F^{k+1}(\perp)=F^{k}(\perp)$ for any k then $F^{k}(\perp)$ is least solution of $F(x) \sqsubseteq x$.

Such a k always exists if the lattice is finite.
What in case of infinite lattices?

Constraint system:

$$
\begin{aligned}
\mathcal{V}[0] & \supseteq \mathbb{Z} \\
\mathcal{V}[1] & \supseteq\{0\} \cup\{x+2 \mid x \in \mathcal{V}[1]\}
\end{aligned}
$$

The least solution:

$$
\mathcal{V}[0]=\mathbb{Z} \text { and } \mathcal{V}[1]=\{2 n \mid n \geq 0\}
$$

Iteration doesn't terminate:

	\perp	$F(\perp)$	$F^{2}(\perp)$	$F^{3}(\perp)$	
$\mathcal{V}[0]$	\emptyset	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\cdots
$\mathcal{V}[1]$	\emptyset	$\{0\}$	$\{0,2\}$	$\{0,2,4\}$	

