
An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅

V[1] ∅

V[2] ∅

V[3] ∅

V[4] ∅

72



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅

V[2] ∅

V[3] ∅

V[4] ∅

72-a



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅

V[3] ∅

V[4] ∅

72-b



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅ {0} × Z

V[3] ∅

V[4] ∅

72-c



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅ {0} × Z

V[3] ∅ {(0, 0)}

V[4] ∅

72-d



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0, 1} × Z

V[2] ∅ {0} × Z

V[3] ∅ {(0, 0)}

V[4] ∅

72-e



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0, 1} × Z

V[2] ∅ {0} × Z {0, 1} × Z

V[3] ∅ {(0, 0)}

V[4] ∅

72-f



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0, 1} × Z

V[2] ∅ {0} × Z {0, 1} × Z

V[3] ∅ {(0, 0)} {(0, 0), (1, 2)}

V[4] ∅

72-g



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0, 1} × Z

V[2] ∅ {0} × Z {0, 1} × Z . . .

V[3] ∅ {(0, 0)} {(0, 0), (1, 2)}

V[4] ∅

72-h



Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1
2

3

4
5

stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

73



Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1
2

3

4
5

stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

Interpretation of our result:

the values of i at node 1 is included in Z

the values of i at node 2 is included in Z
+

This information we obtain is accurate.

73-a



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

74



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering ⊑ on the elements of this domain.

∅ ⊑ Z
− ∅ ⊑ Z

+
Z
− ⊑ Z Z

+ ⊑ Z

Read x ⊑ y as ”y is imprecise information compared to x”.

74-a



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering ⊑ on the elements of this domain.

∅ ⊑ Z
− ∅ ⊑ Z

+
Z
− ⊑ Z Z

+ ⊑ Z

Read x ⊑ y as ”y is imprecise information compared to x”.

We further require operations like least upper bounds.

Z
− ⊔ Z

+ = Z

74-b



A digression: complete lattices

Recall: a set D with relation ⊑ is a partial order if the following conditions

hold for all x, y, z ∈ D.

• Reflexivity: x ⊑ x.

• Antisymmetry: x ⊑ y and y ⊑ x then x = y.

• Transitivity: if x ⊑ y and y ⊑ z then x ⊑ z.

75



An element d ∈ D is called an upper bound of a set X ⊆ D if x ⊑ d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d ⊑ d′ for every upper bound d′ of X

76



An element d ∈ D is called an upper bound of a set X ⊆ D if x ⊑ d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d ⊑ d′ for every upper bound d′ of X

A partial order (D,⊑) is called a complete lattice if every X ⊆ D has a least

upper bound
⊔

X.

We write x ⊔ y for
⊔
{x, y}.

For (2S ,⊆) we have
⊔

X =
⋃

X.

76-a



Some complete lattices.

⊤

⊥
∅

Z
+

Z
−

Z

Z
− = {x ∈ Z | x < 0}

Z
+ = {x ∈ Z | x ≥ 0}

Z × Z
+

Z
+ × Z

−

Z
− × Z

+
Z

+ × Z
+

Z
+ × ZZ × Z

−

Z
− × Z

−

Z
− × Z

∅

Z × Z

77



An infinite complete lattice : (2Z,⊆).

{0} {1} {2}{−1}

{0,−1} {0, 1} {0, 2} {1, 2}

{0, 1, 2}

∅

Z

...

... ...

78



Every complete lattice has

• a top element: ⊤ =
⊔

D

• a bottom element: ⊥ =
⊔

∅

Further every X ⊆ D has a greatest lower bound
d

X.

For (2S ,⊆) we have
d

X =
⋂

X.

Consider the set of lower bounds of X:

L = {l ∈ D | ∀x ∈ X, l ≤ x}

and define

g =
⊔

L

Claim: g is the greatest lower bound of X.

79



(1)

g is a lower bound of X:

Consider any x ∈ X.

l ≤ x for all l ∈ L, i.e. x is an upper bound of L.

Hence g =
⊔

L ⊑ x.

(2)

g is the greatest lower bound of X:

Let l be any other lower bound of X.

Then l ∈ L.

Hence l ⊑
⊔

L = g.

80



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

81



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

81-a



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

The transformations induced by the program edges are monotone:

Recall: [[l]]♯ : 2S → 2S

[[l]]♯ V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

Hence if V1 ⊆ V2 then [[l]]♯ V1 ⊆ [[l]]♯ V2.

81-b



Some facts:

If f : D1 → D2 and g : D2 → D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

82



Some facts:

If f : D1 → D2 and g : D2 → D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

If D2 is a complete lattice then the set [D1 → D2] of monotone functions

f : D1 → D2 is a complete lattice,

where f ⊑ g iff f(x) ⊑ g(x) for all x ∈ D1.

For F ⊆ [D1 → D2] we have
⊔

F = f with f(x) =
⊔
{g(x) | g ∈ F} .

82-a



For our program analysis problem, we want the least solution of the constraint

system

V[0] ⊇ S (0 is the start node)

V[v] ⊇ [[l]]♯ V[u] for every edge (u, l, v).

We have the domain D = 2S . Choose a variable for each set V[v].

We obtain a constraint system of the form

xi ⊒ fi(x1, . . . , xn) (1 ≤ i ≤ n)

83



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

84



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

Transforms to ...

84-a



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ ([[i = 0;]] V[0]

∪[[i = i+1;]] V[3])

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

85



Since D is a lattice, D
n is also a lattice where

(d1, . . . , dn) ⊑ (d′1, . . . , d
′
n) iff di ⊑ d′i for 1 ≤ i ≤ n

The functions fi : D
n → D are monotone.

Define F : D
n → D

n as

F (y) = (f1(y), . . . , fn(y)) where y = (x1, . . . , xn)

F is also monotone.

We need least solution of y ⊒ F (y).

86



Idea: use iteration

Start with the least element ⊥ and compute the sequence

⊥, F (⊥), F 2(⊥), F 3(⊥), . . ..

Do we always reach the least solution in this way?

87



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥

y ⊥

z ⊥

We have F 2(⊥) = F 3(⊥).

88



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥

y ⊥ ⊥

z ⊥ ⊤

We have F 2(⊥) = F 3(⊥).

88-a



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥ ⊤

y ⊥ ⊥ ⊥

z ⊥ ⊤ ⊤

We have F 2(⊥) = F 3(⊥).

88-b



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥ ⊤ ⊤

y ⊥ ⊥ ⊥ ⊥

z ⊥ ⊤ ⊤ ⊤

We have F 2(⊥) = F 3(⊥).

88-c



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

By induction: (1) Clearly ⊥ ⊑ F (⊥).

(2) Further if F i(⊥) ⊑ F i+1(⊥) then by monotonicity

F i+1(⊥) ⊑ F i+2(⊥)

89



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

By induction: (1) Clearly ⊥ ⊑ F (⊥).

(2) Further if F i(⊥) ⊑ F i+1(⊥) then by monotonicity

F i+1(⊥) ⊑ F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

89-a



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

By induction: (1) Clearly ⊥ ⊑ F (⊥).

(2) Further if F i(⊥) ⊑ F i+1(⊥) then by monotonicity

F i+1(⊥) ⊑ F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

Is it also the least solution of F (x) ⊑ x ?

89-b



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

By induction: (1) Clearly ⊥ ⊑ F (⊥).

(2) Further if F i(⊥) ⊑ F i+1(⊥) then by monotonicity

F i+1(⊥) ⊑ F i+2(⊥)

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

Is it also the least solution of F (x) ⊑ x ?

Yes ...

89-c



Claim: If a is a solution of F (x) ⊑ x then F k(⊥) ⊑ a for all k.

By induction: Clearly ⊥ ⊑ a

Further if F k(⊥) ⊑ a then by monotonicity we have

F k+1(⊥) ⊑ F (a) ⊑ a.

90



Claim: If a is a solution of F (x) ⊑ x then F k(⊥) ⊑ a for all k.

By induction: Clearly ⊥ ⊑ a

Further if F k(⊥) ⊑ a then by monotonicity we have

F k+1(⊥) ⊑ F (a) ⊑ a.

Hence if F k+1(⊥) = F k(⊥) for any k then F k(⊥) is least solution of F (x) ⊑ x.

Such a k always exists if the lattice is finite.

What in case of infinite lattices?

90-a



start

0

stop

i=0;

i=i+2;1

Constraint system:

V[0] ⊇ Z

V[1] ⊇ {0} ∪ {x+2 | x ∈ V[1]}

The least solution:

V[0] = Z and V[1] = {2n | n ≥ 0}.

Iteration doesn’t terminate:

⊥ F (⊥) F 2(⊥) F 3(⊥)

V[0] ∅ Z Z Z . . .

V[1] ∅ {0} {0, 2} {0, 2, 4}

91


