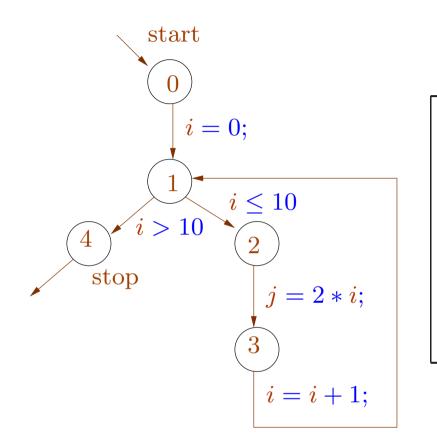
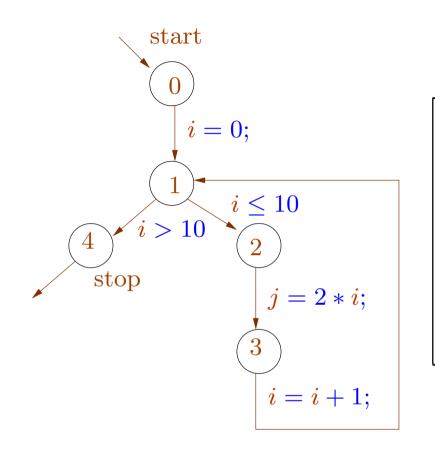


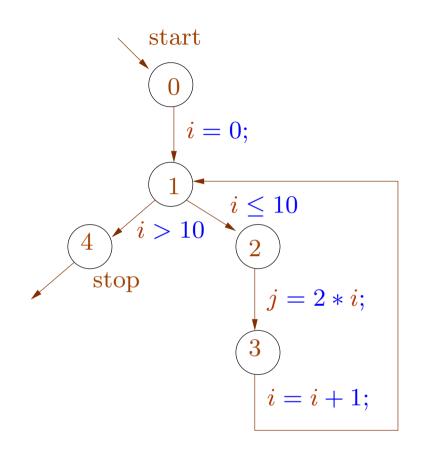
$\mathcal{V}[0]$	Ø		
$\mathcal{V}[1]$	Ø		
$\mathcal{V}[2]$	Ø		
$\mathcal{V}[3]$	Ø		
$\mathcal{V}[4]$	Ø		



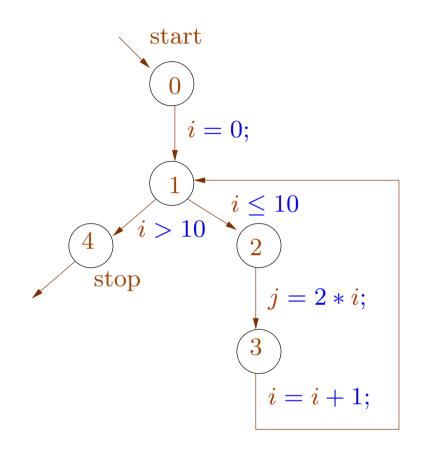
$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	
$\mathcal{V}[2]$	Ø	
$\mathcal{V}[3]$	Ø	
$\mathcal{V}[4]$	Ø	



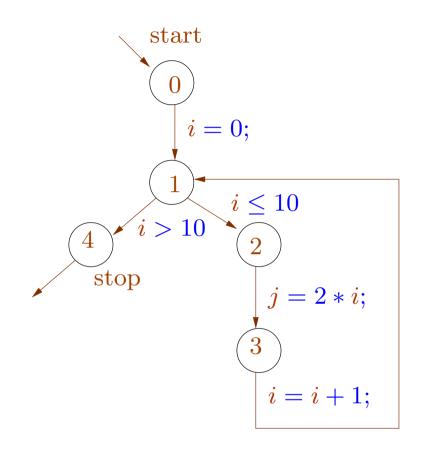
$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	
$\mathcal{V}[3]$	Ø	
$\mathcal{V}[4]$	Ø	



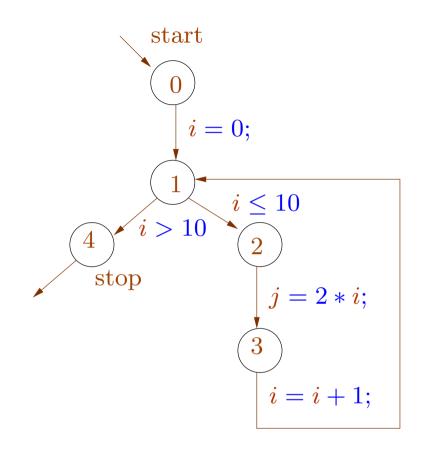
$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[3]$	Ø	
$\mathcal{V}[4]$	Ø	



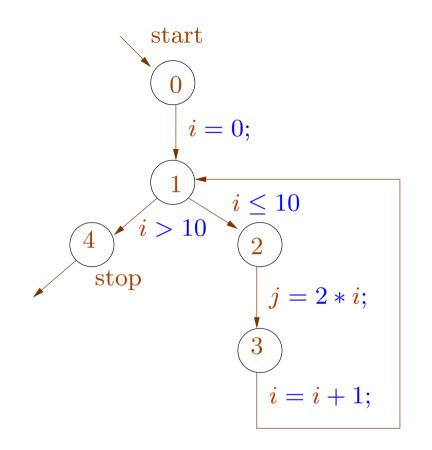
$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[3]$	Ø	$\{(0,0)\}$
$\mathcal{V}[4]$	Ø	



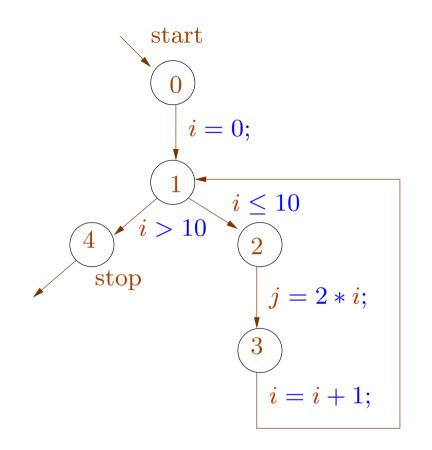
$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z} \{0,1\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z}$
$\mathcal{V}[3]$	Ø	$\{(0,0)\}$
$\mathcal{V}[4]$	Ø	



$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z} \{0,1\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z} \{0,1\} imes \mathbb{Z}$
$\mathcal{V}[3]$	Ø	$\{(0,0)\}$
$\mathcal{V}[4]$	Ø	



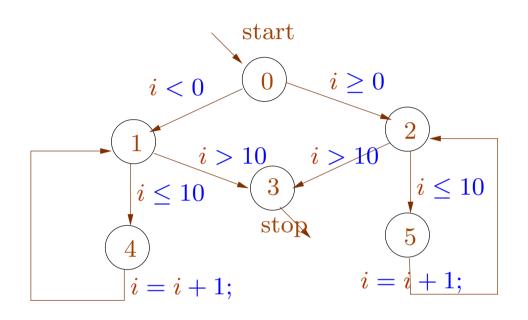
$\mathcal{V}[0]$	Ø	$\mathbb{Z} imes \mathbb{Z}$	
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z}$	$\{0,1\} imes \mathbb{Z}$
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z}$	$\{0,1\} imes \mathbb{Z}$
$\mathcal{V}[3]$	Ø	$\{(0,0)\}$	$\{(0,0),(1,2)\}$
$\mathcal{V}[4]$	Ø		

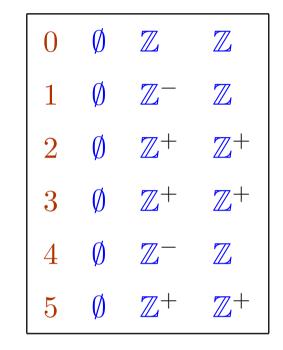


$\mathcal{V}[0]$	Ø	$\mathbb{Z} \times \mathbb{Z}$		
$\mathcal{V}[1]$	Ø	$\{0\} imes \mathbb{Z}$	$\{0,1\} imes \mathbb{Z}$	
$\mathcal{V}[2]$	Ø	$\{0\} imes \mathbb{Z}$	$\{0,1\} imes \mathbb{Z}$	• • •
$\mathcal{V}[3]$	Ø	$\{(0,0)\}$	$\{(0,0),(1,2)\}$	
$\mathcal{V}[4]$	Ø			

Problem: too many iterations, infinite loops.

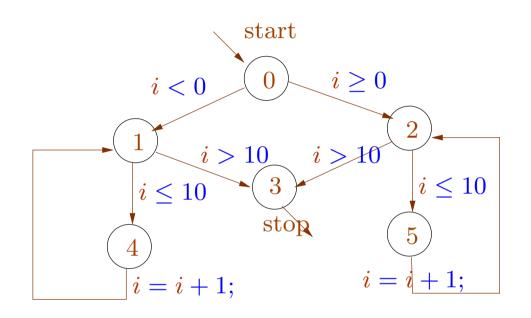
Solution: approximate computation of possible states.

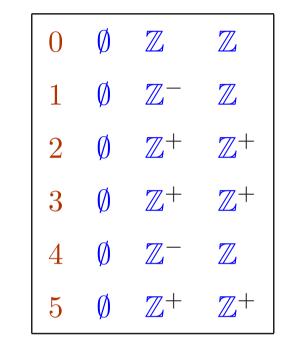




Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.





Interpretation of our result:

the values of i at node 1 is included in \mathbb{Z} the values of i at node 2 is included in \mathbb{Z}^+ This information we obtain is accurate. In general we have some domain \mathbb{D} .

Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}}, \{\emptyset, \mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}\}$, the set of intervals over \mathbb{Z} .

In general we have some domain \mathbb{D} .

Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}}, \{\emptyset, \mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}\},$ the set of intervals over \mathbb{Z} .

We require an ordering \sqsubseteq on the elements of this domain.

 $\emptyset \sqsubseteq \mathbb{Z}^- \qquad \emptyset \sqsubseteq \mathbb{Z}^+ \qquad \mathbb{Z}^- \sqsubseteq \mathbb{Z} \qquad \mathbb{Z}^+ \sqsubseteq \mathbb{Z}$

Read $x \sqsubseteq y$ as "y is imprecise information compared to x".

In general we have some domain \mathbb{D} .

Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}}, \{\emptyset, \mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}\},$ the set of intervals over \mathbb{Z} .

We require an ordering \sqsubseteq on the elements of this domain. $\emptyset \sqsubseteq \mathbb{Z}^ \emptyset \sqsubseteq \mathbb{Z}^+$ $\mathbb{Z}^- \sqsubseteq \mathbb{Z}$ $\mathbb{Z}^+ \sqsubseteq \mathbb{Z}$ Read $x \sqsubseteq y$ as "y is imprecise information compared to x".

We further require operations like least upper bounds.

 $\mathbb{Z}^{-} \sqcup \mathbb{Z}^{+} = \mathbb{Z}$

A digression: complete lattices

Recall: a set \mathbb{D} with relation \sqsubseteq is a partial order if the following conditions hold for all $x, y, z \in \mathbb{D}$.

- Reflexivity: $x \sqsubseteq x$.
- Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ then x = y.
- Transitivity: if $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$.

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.

 $d\in \mathbb{D}$ is called least upper bound of $X\subseteq \mathbb{D}$ if

- d is an upper bound of X
- $d \sqsubseteq d'$ for every upper bound d' of X

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.

 $d\in \mathbb{D}$ is called least upper bound of $X\subseteq \mathbb{D}$ if

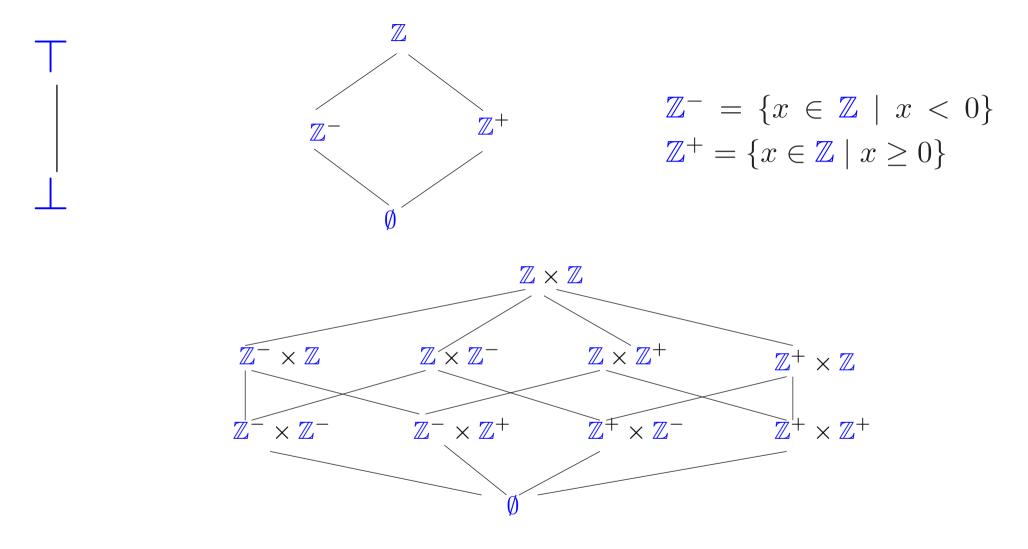
- d is an upper bound of X
- $d \sqsubseteq d'$ for every upper bound d' of X

A partial order $(\mathbb{D}, \sqsubseteq)$ is called a complete lattice if every $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X$.

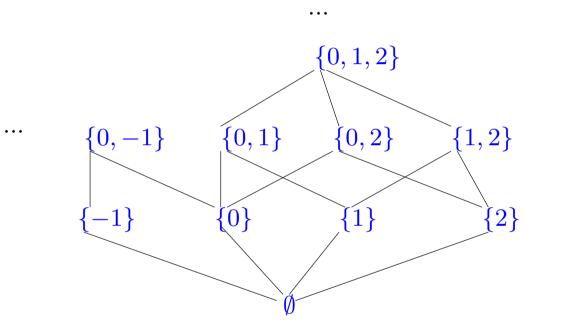
We write $x \sqcup y$ for $\bigsqcup \{x, y\}$.

For $(2^{\mathcal{S}}, \subseteq)$ we have $\bigsqcup X = \bigcup X$.

Some complete lattices.



An infinite complete lattice : $(2^{\mathbb{Z}}, \subseteq)$.



 \mathbb{Z}

• • •

Every complete lattice has

- a top element: $\top = \bigsqcup \mathbb{D}$
- a bottom element: $\bot = \bigsqcup \emptyset$

Further every $X \subseteq \mathbb{D}$ has a greatest lower bound $\square X$.

For $(2^{\mathcal{S}}, \subseteq)$ we have $\prod X = \bigcap X$.

Consider the set of lower bounds of X:

$$L = \{l \in \mathbb{D} \mid \forall x \in X, l \le x\}$$

and define

$$g = \bigsqcup L$$

Claim: g is the greatest lower bound of X.

(1) g is a lower bound of X: $Consider \text{ any } x \in X.$ $l \leq x \text{ for all } l \in L, \text{ i.e. } x \text{ is an upper bound of } L.$ $Hence \ g = \bigsqcup L \sqsubseteq x.$

> g is the greatest lower bound of X: Let l be any other lower bound of X. Then $l \in L$. Hence $l \sqsubseteq \bigsqcup L = g$.

(2)

A function $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotone if: $f(x) \sqsubseteq f(y)$ whenever $x \sqsubseteq y$

A function $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotone if: $f(x) \sqsubseteq f(y)$ whenever $x \sqsubseteq y$

The function $f : \mathbb{Z} \to \mathbb{Z}$ defined as f(x) = x + 1 is monotone. Note: (\mathbb{Z}, \leq) is not a complete lattice. A function $f : \mathbb{D}_1 \to \mathbb{D}_2$ is called monotone if: $f(x) \sqsubseteq f(y)$ whenever $x \sqsubseteq y$

The function $f : \mathbb{Z} \to \mathbb{Z}$ defined as f(x) = x + 1 is monotone. Note: (\mathbb{Z}, \leq) is not a complete lattice.

The transformations induced by the program edges are monotone: Recall: $\llbracket l \rrbracket^{\sharp} : 2^{\mathcal{S}} \to 2^{\mathcal{S}}$ $\llbracket l \rrbracket^{\sharp} V = \{ \llbracket l \rrbracket \rho \mid \rho \in V \text{ and } \llbracket l \rrbracket \text{ is defined for } \rho \}.$ Hence if $V_1 \subseteq V_2$ then $\llbracket l \rrbracket^{\sharp} V_1 \subseteq \llbracket l \rrbracket^{\sharp} V_2.$ Some facts:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ and $g : \mathbb{D}_2 \to \mathbb{D}_3$ are monotone then the composition $g \circ f : \mathbb{D}_1 \to \mathbb{D}_3$ is monotone. Some facts:

If $f : \mathbb{D}_1 \to \mathbb{D}_2$ and $g : \mathbb{D}_2 \to \mathbb{D}_3$ are monotone then the composition $g \circ f : \mathbb{D}_1 \to \mathbb{D}_3$ is monotone.

If \mathbb{D}_2 is a complete lattice then the set $[\mathbb{D}_1 \to \mathbb{D}_2]$ of monotone functions $f: \mathbb{D}_1 \to \mathbb{D}_2$ is a complete lattice,

where $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all $x \in \mathbb{D}_1$. For $F \subseteq [\mathbb{D}_1 \to \mathbb{D}_2]$ we have

 $\Box F = f \text{ with } f(x) = \bigsqcup \{ g(x) \mid g \in F \}$

82-a

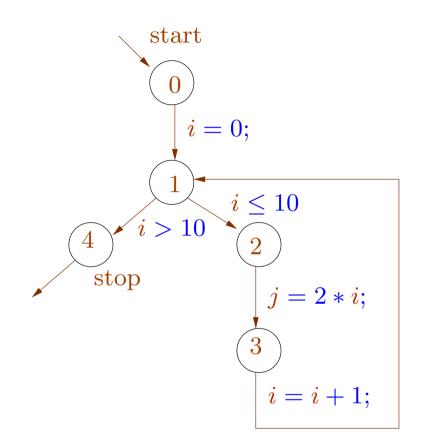
For our program analysis problem, we want the least solution of the constraint system

 $\mathcal{V}[0] \supseteq \mathcal{S}$ (0 is the *start* node) $\mathcal{V}[v] \supseteq \llbracket l \rrbracket^{\sharp} \mathcal{V}[u]$ for every edge (u, l, v).

We have the domain $\mathbb{D} = 2^{\mathcal{S}}$. Choose a variable for each set $\mathcal{V}[v]$. We obtain a constraint system of the form

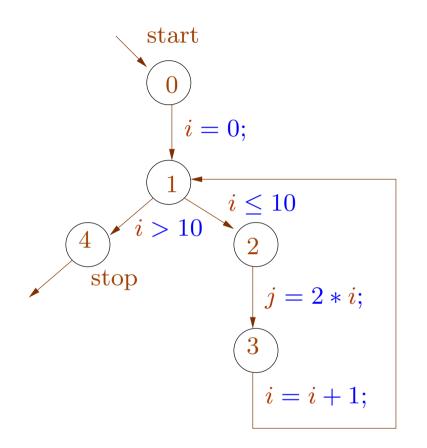
 $x_i \supseteq f_i(x_1, \dots, x_n) \qquad (1 \le i \le n)$

Example



$\mathcal{V}[0] \supseteq$	S
$\mathcal{V}[1] \supseteq$	$\llbracket i=0; rbracket \mathcal{V}[0]$
$\mathcal{V}[1] \supseteq$	$\llbracket i=i{+}1; rbracket \mathcal{V}[3]$
$\mathcal{V}[2] \supseteq$	$\llbracket i \leq 10 rbrace \mathcal{V}[1]$
$\mathcal{V}[3] \supseteq$	$\llbracket j=2{*}i{;} rbracket \mathcal{V}[2]$
$\mathcal{V}[4] \supseteq$	$\llbracket i > 10 rbracket \mathcal{V}[1]$

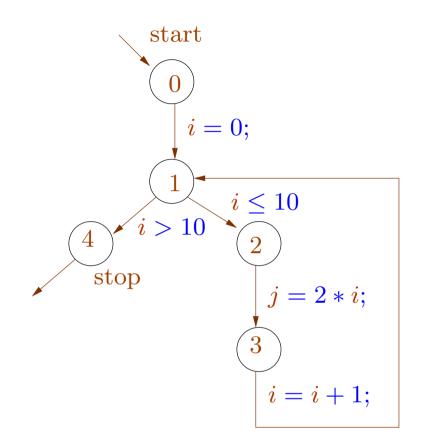
Example



 $egin{aligned} \mathcal{V}[0] &\supseteq &\mathcal{S} \ \mathcal{V}[1] &\supseteq & \llbracket i = 0; \rrbracket \ \mathcal{V}[0] \ \mathcal{V}[1] &\supseteq & \llbracket i = i{+}1; \rrbracket \ \mathcal{V}[3] \ \mathcal{V}[2] &\supseteq & \llbracket i \leq 10 \rrbracket \ \mathcal{V}[1] \ \mathcal{V}[3] &\supseteq & \llbracket j = 2{*}i; \rrbracket \ \mathcal{V}[2] \ \mathcal{V}[4] &\supseteq & \llbracket i > 10 \rrbracket \ \mathcal{V}[1] \end{aligned}$

Transforms to ...

Example



 $egin{aligned} \mathcal{V}[0] &\supseteq &\mathcal{S} \ \mathcal{V}[1] &\supseteq & (\llbracket i=0; \rrbracket \ \mathcal{V}[0] \ & \cup \llbracket i=i{+}1; \rrbracket \ \mathcal{V}[3]) \ \mathcal{V}[2] &\supseteq & \llbracket i \leq 10 \rrbracket \ \mathcal{V}[1] \ \mathcal{V}[3] &\supseteq & \llbracket j=2{*}i; \rrbracket \ \mathcal{V}[2] \ \mathcal{V}[4] &\supseteq & \llbracket i > 10 \rrbracket \ \mathcal{V}[1] \end{aligned}$

Since \mathbb{D} is a lattice, \mathbb{D}^n is also a lattice where

$$(d_1, \ldots, d_n) \sqsubseteq (d'_1, \ldots, d'_n)$$
 iff $d_i \sqsubseteq d'_i$ for $1 \le i \le n$

The functions $f_i : \mathbb{D}^n \to \mathbb{D}$ are monotone.

Define $F : \mathbb{D}^n \to \mathbb{D}^n$ as $F(y) = (f_1(y), \dots, f_n(y))$ where $y = (x_1, \dots, x_n)$

F is also monotone.

We need least solution of $y \supseteq F(y)$.

Idea: use iteration

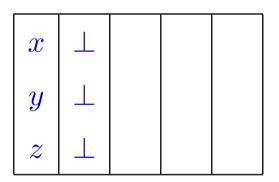
Start with the least element \perp and compute the sequence $\perp, F(\perp), F^2(\perp), F^3(\perp), \ldots$

Do we always reach the least solution in this way?

Constraint system:

 $\begin{array}{l} x \sqsupseteq y \lor z \\ y \sqsupseteq x \land y \land z \\ z \sqsupseteq \top \end{array}$

The iteration:

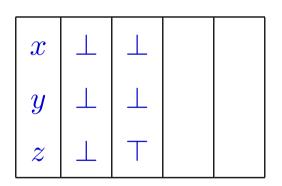


We have $F^2(\perp) = F^3(\perp)$.

Constraint system:

 $\begin{array}{l} x \sqsupseteq y \lor z \\ y \sqsupseteq x \land y \land z \\ z \sqsupseteq \top \end{array}$

The iteration:



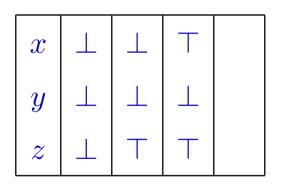
We have $F^2(\perp) = F^3(\perp)$.

88-a

Constraint system:

 $\begin{array}{c} x \sqsupseteq y \lor z \\ y \sqsupseteq x \land y \land z \\ z \sqsupseteq \top \end{array}$

The iteration:



We have $F^2(\perp) = F^3(\perp)$.

Constraint system:

 $\begin{array}{c} x \sqsupseteq y \lor z \\ y \sqsupseteq x \land y \land z \\ z \sqsupseteq \top \end{array}$

The iteration:

x			Τ	Т
y	\bot	\bot	\bot	\perp
z		Τ	T	Т

We have $F^2(\bot) = F^3(\bot)$.

88-с

$$\bot \sqsubseteq F(\bot) \sqsubseteq F^2(\bot) \sqsubseteq F^3(\bot) \dots$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.

(2) Further if $F^i(\bot) \subseteq F^{i+1}(\bot)$ then by monotonicity $F^{i+1}(\bot) \subseteq F^{i+2}(\bot)$

$$\bot \sqsubseteq F(\bot) \sqsubseteq F^2(\bot) \sqsubseteq F^3(\bot) \dots$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.

(2) Further if $F^{i}(\perp) \subseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \subseteq F^{i+2}(\perp)$

Further if $F^k(\bot) = F^{k+1}(\bot)$ for some k then clearly $F^k(\bot)$ is some solution of the constraint $F(x) \sqsubseteq x$.

$$\bot \sqsubseteq F(\bot) \sqsubseteq F^2(\bot) \sqsubseteq F^3(\bot) \dots$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.

(2) Further if $F^{i}(\perp) \subseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \subseteq F^{i+2}(\perp)$

Further if $F^k(\bot) = F^{k+1}(\bot)$ for some k then clearly $F^k(\bot)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Is it also the least solution of $F(x) \sqsubseteq x$?

$$\bot \sqsubseteq F(\bot) \sqsubseteq F^2(\bot) \sqsubseteq F^3(\bot) \dots$$

By induction: (1) Clearly $\perp \sqsubseteq F(\perp)$.

(2) Further if $F^{i}(\perp) \subseteq F^{i+1}(\perp)$ then by monotonicity $F^{i+1}(\perp) \subseteq F^{i+2}(\perp)$

Further if $F^k(\bot) = F^{k+1}(\bot)$ for some k then clearly $F^k(\bot)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Is it also the least solution of $F(x) \sqsubseteq x$?

Yes ...

Claim: If a is a solution of $F(x) \sqsubseteq x$ then $F^k(\bot) \sqsubseteq a$ for all k.

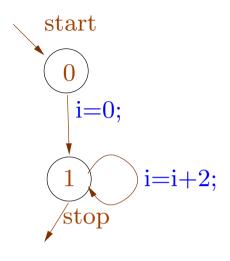
By induction: Clearly $\perp \sqsubseteq a$ Further if $F^k(\perp) \sqsubseteq a$ then by monotonicity we have $F^{k+1}(\perp) \sqsubseteq F(a) \sqsubseteq a$. Claim: If a is a solution of $F(x) \sqsubseteq x$ then $F^k(\bot) \sqsubseteq a$ for all k.

By induction: Clearly $\perp \sqsubseteq a$ Further if $F^k(\perp) \sqsubseteq a$ then by monotonicity we have $F^{k+1}(\perp) \sqsubseteq F(a) \sqsubseteq a$.

Hence if $F^{k+1}(\bot) = F^k(\bot)$ for any k then $F^k(\bot)$ is least solution of $F(x) \sqsubseteq x$.

Such a k always exists if the lattice is finite.

What in case of infinite lattices?



Constraint system: $\mathcal{V}[0] \supseteq \mathbb{Z}$ $\mathcal{V}[1] \supseteq \{0\} \cup \{x+2 \mid x \in \mathcal{V}[1]\}$ The least solution: $\mathcal{V}[0] = \mathbb{Z} \text{ and } \mathcal{V}[1] = \{2n \mid n \ge 0\}.$

Iteration doesn't terminate:

		$F(\perp)$	$F^2(ot)$	$F^3(\perp)$	
$\mathcal{V}[0]$	Ø	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	• • •
$\mathcal{V}[1]$	Ø	{0}	$\{0,2\}$	$\{0,2,4\}$	