Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D — ID has a least

fixpoint a.

Fixpoint: an element z such that f(z) = x.

Prefixpoint: an element x such that f(x) C x.
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Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D — ID has a least

fixpoint a.

Fixpoint: an element z such that f(z) = x.

Prefixpoint: an element x such that f(x) C x.
Let P={z € D| f(z) C x} (the set of prefixpoints).
The least fixpoint of f is a =[] P.

(1) ae€P:
fla) E f(d) Ed for all d € P.
— f(a) is a lower bound of P.
— f(a) C a.
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— a is the least prefixpoint.

?) f(a)=a
f(a) € a, from (1)
. f?(a) C f(a), by monotonicity
— fla) € P
— aC f(a)

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.
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Example 1: Consider partial order D] =N with OC 1 CE2LC .. ..
The function f(x) = x+1 is monotonic.
However it has no fixpoint.

Actually D is not a complete lattice.

94



Example 1: Consider partial order D] =N with OC 1 CE2LC .. ..
The function f(x) = x+1 is monotonic.
However it has no fixpoint.

Actually D is not a complete lattice.

Example 2: Now we consider Dy = N U {oo}.
This is a complete lattice.
The function f(x) = x+1 is again monotonic.

The only fixpoint is co: co+1 = 0.

94-b



Abstract Interpretation: Cousot, Cousot 1977
We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

\Start
IO 1 :—O0,00] :—O0,00] :—O0,00] :—O0,00]
7] L 0,00 [0,2]  [0,12  [0,12]
7[2] L 0,0] 0,2]... [0,10] 0,10]
73 L L 1 11,12]  [11,12]

The analysis guarantees e.g. that at node 1 the value of ¢ is always in the
interval [0, 12].
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We have the set of concrete states S = (Vars — 7Z).
We choose a complete lattice D of abstract states.

We define an abstraction relation
A SxD
with the condition that
p A a N alb = p A b

a = b
A -
0
The concretization function: va)=A{pl|p A a}.

96



Example: For a program on two integer variables, Vars = {z, y}.

The concrete states are from the set S = (Vars — Z) (or equivalently Z2).

For interval analysis, we choose the complete lattice
Dy = (Vars = 1), = (Vars = 1) U {L}

where I = {[l,u] |l € ZU {—o0},u € ZU {oo},l < u} is the set of intervals.

1 U1

lo U2

Partial order on I: [l1,u1] C [lo,us] iff [ > ls and uy < ug

(As usual, —oo < n < oo for all n € Z.)
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Partial order on Vars — I:  D; C Dy iff Di(2) C Ds(x).
Extension to (Vars — 1);: 1 C D for all D.

(Vars — I) | is a complete lattice. (Vars — 1) is not.

In particular we define [I1,u1] U [lo, ua| = [I1 M2, u1 L us).
l1 Mo w1 L ue
1 U1
lo u2

L represents the “unreachable state”: maps every variable to the “empty

interval”.
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The abstraction relation:
p A D if D#1 and p(z) A D(x) for each z.

where n A [l u] iff | <n <.
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The abstraction relation:
p A D iff D=1 and p(x) A D(x) for each x.

where n A [l u] iff | <n <.

This satisfies the required condition:

Suppose p A Dy and D C Ds.
— Dy # 1L and Dy # 1.

p(r) A Di(x) and Di(x) E Dy(x) for each .
— p(r) A D;i(x) for each x.

‘p(z)
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The concretization function:

for D # L

{{z =3,y =0}, {z— 3,y — 1},
L Ar— 3,y — T}
. Ar—5y—0}.. {r—5y—T}}
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Abstraction of the partial transformation induced by edges.

Recall the edges k = (u,l,v) induce a partial transformation on concrete states:

k] =[] :S— S

Now on our chosen domain ID we define a monotonic abstract transtormation:
[K]* =[] :D—D

The abstract transformation should simulate the concrete transtormation:
if p A a and [I] pisdefined then [I]p A [i]* a.

Y
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Abstract transformation for interval analysis.

For concrete operators [ we define monotonic abstract operators [ such that
1 A ay A ATy A a, = 0Ox1,...,2,) A Oag,...,ap)

addition: [11, ul] -I—Ij [12, 'UQ] = [11 + lo, u; + 'UQ].
_ + o0 = OO
_ + —00 = OO

// o0 + —o0 is undefined.

substraction: —5 1) = |[—u, —I]
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Multiplication: [li,u1] **  [lo,us] = [m,n] where

m = 1l T l{us T uyly Muqus
n — {11y U lyus U uqle L uqus
Example:  [1,3] % [5,8] = [5, 24]
—1,3] «f [5,8] =[-8, 24]
—1,3] % [-5,8]  =[-15,24]
—1,3] #* [-5,-8] =[-24,5]
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Equality test:
:1,1: if Zl = Ui 212 — U2

[llaul] ==f [lg,ug] = < :0,0: if uyp <l or us < Iy

0,1] otherwise

Example:
7,7 == (7,71 =]1,1
1,7 == [9,12] =10,0
1,7 ==* [1,7 =]0,1
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Inequality test:

1, u1] <* [lg,ug] =

Example:

1, 7]
9, 12]

1,7

9

1,1] if
0,0] if
0,1] otherwise
<t 19,12] =[1,1]
<t 11,7 =10,0]
<t [6,8] =10,1]

up < lo

us < lq
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Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[2]* D = [n,n]
[O(er,...,en)]F D =0O4[e1]? D,...,[en]* D)
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Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(eq,....e)]* D =0O4[el]? D,...,[e,]* D)
Fact: p A D and [e] pis defined = [e] p A [e]* D.
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Monotonic abstract evaluation of expressions

For D # 1,

Fact:

Case e 1s x:

[z]F D = D(x)
[n]F D = [n,n]
[O(er,...,ex)]F D =0[e1]? D, ..., [en]* D)
p A D and [e] pis defined = [e] p A [e]* D.

since p A D hence [2] p=p(z) A D(x)=[z]f D
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Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(eq,....e)]* D =0O4[el]? D,...,[e,]* D)
Fact: p A D and [e] pis defined = [e] p A [e]* D.

Case e is x: since p A D hence [z] p=p(z) A D(z)=[z]* D
Case e is n: [n] p=n A [n,n]=[n]! D
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Monotonic abstract evaluation of expressions

For D # 1, []* D = D(x)
[n]F D = [n,n]
[O(eq,....e)]* D =0O4[el]? D,...,[e,]* D)

Fact: p A D and [e] pis defined = [e] p A [e]* D.
Case e is x: since p A D hence [2] p=p(z) A D(x)=[z]f D
Case e is n: [n] p=n A [n,n]=[n]! D

Case e is L(eq,...,e,) : since each [e;] p A [e;]* D hence

[Oer, .- en)] p =0(ed] p, ... len] o)
A

D%([e1]* D, ..., [en]* D) =[0ey,...,e,)]* D
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Finally, the monotonic abstract transformations induced by edges

F L =1L
For D # 1, LfD =D
[+=¢]f D =Da{xw [e]f D}

e D :J L if [e]* D =10,0]

D otherwise

\
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Finally, the monotonic abstract transformations induced by edges

F L =1
For D # 1, LIf D =D
[+ =e]* D =D& {z— [e]f D}

e D :J L if [e]* D =10,0]

D otherwise

\

Next we must check the condition:
p A D AN [llp=p1 N [II* D=D;, = p; A Dy.
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Finally, the monotonic abstract transformations induced by edges

F L =1
For D # 1, LfD =D
[+=e]" D =D {zw [e]f D}

e D :J L if [e]* D =10,0]

D otherwise

\

Next we must check the condition:

p A D A [llp=p1 N ! D=Dy = p1 A Dy.

Clearly D # L here.
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Tocheck: p A D A [Ilp=p1 N [I]*D=Dy = p1 A Dy.
Case [ is ;

pr=p A D=Ds.
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To check: p A D AN [llp=p1 N [I]*D=Dy = p1 A Dy.
Case [ is ;

pr=p A D=Ds.
Case [ is © = e;

p=p®{z—[e] p} and Di=D&{x+ [e]* D}

As [e] p A [e]* D hence pi A Dj.
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To check: p A D AN [llp=p1 N [I]*D=Dy = p1 A Dy.
Case [ is ;
pr=p A D=Ds.
Case [ is © = e;
pr=p@®{z—[e] p} and Di=D®{z+ [e]* D}
As [e] p A [e]* D hence pi A Dj.
Case e is some condition e
Since the tranformation [e] p is defined,
hence the expression evaluation [e] p # 0, and p; = p.
Since p A D,
hence the abstract expression evaluation [e]* D # [0,0], and D; = D.
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Recall, for a path 7 = k1 ... k,,
[7] p = ([kn] o...0[F1] )p
[7]* D = ([kn]? o...0[ki]* )D

We conclude from above:
if p A D and [r] p is defined then [7] p A [r]* D.

|

p [l Pl Il Bl
p [l [kl [ks) [Fn]
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Merge over All Paths (MOP):
D*v] = | [{[x]* T | 7 start —* v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[zl » A D[v]

Hence D*|v] abstracts all states possible at node wv.
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Merge over All Paths (MOP):
D*v] = | [{[x]* T | 7 start —* v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[zl » A D[v]

Hence D*|v] abstracts all states possible at node wv.

To compute it, we use the constraint system:

Dlstart] I T
D|v] 3 [k]* Dlu] for edge k = (u,l,v)
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Merge over All Paths (MOP):
D*v] = | [{[x]* T | 7 start —* v}

For any initial concrete state p and path 7 : start —* v, if [7] p is defined then

[zl » A D[v]

Hence D*|v] abstracts all states possible at node wv.

To compute it, we use the constraint system:

Dlstart] I T
D|v] 3 [k]* Dlu] for edge k = (u,l,v)

How are the two related?

110-b



Merge over All Paths (MOP):
D*v] = |_|{[[7r]]ti Dy | 7 start —™ v}

Theorem: Kam,Ullman 1975

Let D be the smallest solution of the constraint system

Dlstart] 3 Dyg
D|v] 3 [k]* Dlu] for edge k = (u,l,v)

Then we have
Dlv| 3 D*|v] for every v

In other words: D[v] 3 [r]* Dy for every 7 : start —* v
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Proof: induction on the length of :
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Proof: induction on the length of :

Case m = € (empty path).
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Proof: induction on the length of :

Case m = € (empty path).
[7]* Dy = Dy C Dlstart]
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Proof: induction on the length of :

Case m = ¢ (empty path).
[7]* Dy = Dy C Dlstart]

Induction step: m = n'k for k = (u,l,v).
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Proof: induction on the length of :

Case m = ¢ (empty path).
[7]* Dy = Dy C Dlstart]

Induction step: m = n'k for k = (u,l,v).

[7']* Dy C Dlu] induction hypothesis
[7]* Do = [k]* ([7']* Do)

C [k]* (D[u)]) monotonicity

C D|v] D is a solution
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Question:

Does the constraint system give us only an upper bound 7

113



Question:

Does the constraint system give us only an upper bound 7

Answer:

In general yes.
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Question:

Does the constraint system give us only an upper bound 7

Answer:

In general yes.

Now let’s assume that all the functions [k]* are distributive ...
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A function f : Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | v € X} for all ) # X C Dj.
e strict, when f(L)= L.

e total distributive, when f is strict and distributive.
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A function f : Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | v € X} for all ) # X C Dj.
e strict, when f(L)= L.
e total distributive, when f is strict and distributive.

Example 1: Dy =Dy = (2Y, C) for some set U.

flx)=xN AU B for some A,B CU.
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A function f : Dy — Dy is called
e distributive, when f(| | X) = |{f(z) | v € X} for all ) # X C Dj.
e strict, when f(L)= L.
e total distributive, when f is strict and distributive.

Example 1: Dy =Dy = (2Y, C) for some set U.

flx)=xN AU B for some A,B CU.

Strictness: f(()) = B = strict only if B = ().
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A function f : Dy — Dy is called

e distributive, when f(| | X) = |{f(z) | v € X} for all ) # X C Dj.

e strict, when f(L)= L.

e total distributive, when f is strict and distributive.
Example 1: Dy =Dy = (2Y, C) for some set U.
flx)=xN AU B for some A,B CU.

Strictness: f()) = B = strict only if B = ().
fl(xUy) =(xUy)NAUB
Distributivity: =(zNA)U(yNA)UB
= (xNAUB)U(yNAUDB)

Yes
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
Strictness: f(L)=0+1=1# L No
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
Strictness: f(L)=0+1=1# L No

Distributivity: f([|X) =1+||X =|{z+1 |z e X} =| {f(x) |z € X} for
D+ X Yes
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
Strictness: f(L)=0+1=1# L No

Distributivity: f([|X) =1+||X =|{z+1 |z e X} =| {f(x) |z € X} for
D+ X Yes

Example 3: D = (NU{o0})?, Dy =NU{cc}, f(z,y)=a+y
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
Strictness: f(L)=0+1=1# L No

Distributivity: f([|X) =1+||X =|{z+1 |z e X} =| {f(x) |z € X} for
D+ X Yes

Example 3: D = (NU{o0})?, Dy =NU{cc}, f(z,y)=a+y
Strictness: f(L)=0+0=0= 1 Yes
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Example 2: Dy =Dy = NU{o0}, f(x)=2a+1.
Strictness: f(L)=0+1=1# L No

Distributivity: f([|X) =1+||X =|{z+1 |z e X} =| {f(x) |z € X} for
D+ X Yes

Fxample 3: D1 = (NU{o0})?, Dy =NU{o0}, f(x,y)=2a+y
Strictness: f(L)=0+0=0= 1 Yes
Distributivity: f((1,4)U (4,1)) = f(4,4) =8 £ 5 = f(1,4) U f(4,1)  No
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Assumption: All nodes v are reachable from the node start.

(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations [k]# are distributive then
D*|v] = D|v] for all v.
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Assumption: All nodes v are reachable from the node start.

(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations [k]# are distributive then
D*|v] = D|v] for all v.

Proof: We show that D* satisfies the constraint system.
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(1) For the start node:

D*[start] = | [{[#]* Do | 7 : start — start}
3 [€]* Do
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(1) For the start node:
D*[start] = | [{[#]* Do | 7 : start — start}
3 [e]* Do
= Dy

(2) For every edge k = (u,l,v)

D*[v] =| |{[r]* Do | : start — v}
3| {[x'k]* Do | 7" : start — u}
= {I%[* ([=']F Do) | 7 = start — u}
= [K]* (L{[~']* Do | 7' : start — u})
= [k (D*[u])

since {7’ | 7’ : start — u} is non-empty.
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The result does not hold in case of unreachable nodes.

We consider D = NU {oo} with ordering 0 E 1 C2LC ... C oo.

Abstraction relation: n A a iff n < a.

The abstract transformation for the second edge is defined by [k]* a = a+1.
We choose Dy = 5.

We have the constraints D[0] 3 5 and D|2] J D|[1]+1.

We have
D2l =[]0=0
D2| =0+1=1
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