Existence of least solutions: Knaster-Tarski
Fact: In a complete lattice \mathbb{D}, every monotone function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that $f(x)=x$.
Prefixpoint: an element x such that $f(x) \sqsubseteq x$.

Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice \mathbb{D}, every monotone function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that $f(x)=x$.
Prefixpoint: an element x such that $f(x) \sqsubseteq x$.
Let $P=\{x \in \mathbb{D} \mid f(x) \sqsubseteq x\}$ (the set of prefixpoints).
The least fixpoint of f is $a=\Pi P$.
(1) $a \in P$:

$$
\begin{aligned}
& f(a) \sqsubseteq f(d) \sqsubseteq d \text { for all } d \in P . \\
\Longrightarrow & f(a) \text { is a lower bound of } P . \\
\Longrightarrow & f(a) \sqsubseteq a .
\end{aligned}
$$

```
\(\Longrightarrow \quad a\) is the least prefixpoint.
```

(2) $f(a)=a$:

$$
\begin{array}{ll}
& f(a) \sqsubseteq a, \text { from (1) } \\
\Longrightarrow & f^{2}(a) \sqsubseteq f(a), \text { by monotonicity } \\
\Longrightarrow & f(a) \in P \\
\Longrightarrow & a \sqsubseteq f(a)
\end{array}
$$

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.

Example 1: Consider partial order $\mathbb{D}_{1}=\mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots$
The function $f(x)=x+1$ is monotonic.
However it has no fixpoint.
Actually \mathbb{D}_{1} is not a complete lattice.

Example 1: Consider partial order $\mathbb{D}_{1}=\mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots$.
The function $f(x)=x+1$ is monotonic.
However it has no fixpoint.
Actually \mathbb{D}_{1} is not a complete lattice.

Example 2: Now we consider $\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}$.
This is a complete lattice.
The function $f(x)=x+1$ is again monotonic.
The only fixpoint is ∞ : $\infty+1=\infty$.

Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.
Example: intervals as abstract values:

The analysis guarantees e.g. that at node 1 the value of i is always in the interval $[0,12]$.

We have the set of concrete states $\mathcal{S}=(\operatorname{Vars} \rightarrow \mathbb{Z})$.
We choose a complete lattice \mathbb{D} of abstract states.
We define an abstraction relation

$$
\Delta: \mathcal{S} \times \mathbb{D}
$$

with the condition that

The concretization function: $\quad \gamma(a)=\{\rho \mid \rho \Delta a\}$.

Example: For a program on two integer variables, Vars $=\{x, y\}$.

The concrete states are from the set $\mathcal{S}=(\operatorname{Vars} \rightarrow \mathbb{Z})$ (or equivalently $\left.\mathbb{Z}^{2}\right)$.

For interval analysis, we choose the complete lattice

$$
\mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}=(\text { Vars } \rightarrow \mathbb{I}) \cup\{\perp\}
$$

where $\mathbb{I}=\{[l, u] \mid l \in \mathbb{Z} \cup\{-\infty\}, u \in \mathbb{Z} \cup\{\infty\}, l \leq u\}$ is the set of intervals.

Partial order on $\mathbb{I}:\left[l_{1}, u_{1}\right] \sqsubseteq\left[l_{2}, u_{2}\right]$ iff $l_{1} \geq l_{2}$ and $u_{1} \leq u_{2}$
(As usual, $-\infty \leq n \leq \infty$ for all $n \in \mathbb{Z}$.)

Partial order on Vars $\rightarrow \mathbb{I}: \quad D_{1} \sqsubseteq D_{2} \quad$ iff $D_{1}(x) \sqsubseteq D_{2}(x)$.
Extension to $(\operatorname{Vars} \rightarrow \mathbb{I})_{\perp}: \quad \perp \sqsubseteq D \quad$ for all D.
$(\operatorname{Vars} \rightarrow \mathbb{I})_{\perp}$ is a complete lattice. $(\operatorname{Vars} \rightarrow \mathbb{I})$ is not.

In particular we define $\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]$.

\perp represents the "unreachable state": maps every variable to the "empty interval".

The abstraction relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \text { and } \rho(x) \Delta D(x) \text { for each } x .
$$ where $n \Delta[l, u]$ iff $l \leq n \leq u$.

The abstraction relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \text { and } \rho(x) \Delta D(x) \text { for each } x .
$$

where $n \Delta[l, u]$ iff $l \leq n \leq u$.

This satisfies the required condition:
Suppose $\quad \rho \Delta D_{1}$ and $D_{1} \sqsubseteq D_{2}$.
$\Longrightarrow \quad D_{1} \neq \perp$ and $D_{2} \neq \perp$.
$\rho(x) \quad \Delta \quad D_{1}(x)$ and $D_{1}(x) \sqsubseteq D_{2}(x)$ for each x.
$\Longrightarrow \quad \rho(x) \Delta D_{1}(x)$ for each x.

$$
\cdot \rho(x) \quad D_{1}(x)
$$

$$
工 \quad D_{2}(x)
$$

The concretization function:

$$
\begin{aligned}
& \gamma(\perp)=\{ \} \\
& \gamma(D)=\{\rho \mid \rho(x) \Delta D(x)\}, \quad \text { for } D \neq \perp \\
& \gamma(\{x \mapsto[3,5], y \mapsto[0,7]\})=\quad\{\{x \mapsto 3, y \mapsto 0\},\{x \mapsto 3, y \mapsto 1\}, \\
& \ldots\{x \mapsto 3, y \mapsto 7\} \\
& \ldots\{x \mapsto 5, y \mapsto 0\} \ldots\{x \mapsto 5, y \mapsto 7\}\}
\end{aligned}
$$

Abstraction of the partial transformation induced by edges.
Recall the edges $k=(u, l, v)$ induce a partial transformation on concrete states:

$$
\llbracket k \rrbracket=\llbracket l \rrbracket: \mathcal{S} \rightarrow \mathcal{S}
$$

Now on our chosen domain \mathbb{D} we define a monotonic abstract transformation:

$$
\llbracket k \rrbracket^{\sharp}=\llbracket l \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}
$$

The abstract transformation should simulate the concrete transformation: if $\quad \rho \Delta a$ and $\llbracket l \rrbracket \rho$ is defined then $\llbracket l \rrbracket \rho \Delta \llbracket l \rrbracket \rrbracket a$.

Abstract transformation for interval analysis.

For concrete operators \square we define monotonic abstract operators \square^{\sharp} such that $x_{1} \quad \Delta a_{1} \wedge \ldots \wedge x_{n} \Delta a_{n} \Longrightarrow \square\left(x_{1}, \ldots, x_{n}\right) \quad \Delta \quad \square^{\sharp}\left(a_{1}, \ldots, a_{n}\right)$
addition: $\quad\left[l_{1}, u_{1}\right] \quad+^{\sharp}\left[l_{2}, u_{2}\right] \quad=\left[l_{1}+l_{2}, u_{1}+u_{2}\right]$.

- $+\infty=\infty$
_ $+-\infty=\infty$
$/ / \infty+-\infty$ is undefined.
substraction:

$$
-^{\sharp} \quad[l, u] \quad=[-u,-l]
$$

Multiplication: $\left[l_{1}, u_{1}\right] \quad * \quad\left[l_{2}, u_{2}\right] \quad=[m, n] \quad$ where

$$
\begin{array}{ll}
m & =l_{1} l_{2} \sqcap l_{1} u_{2} \sqcap u_{1} l_{2} \sqcap u_{1} u_{2} \\
n & =l_{1} l_{2} \sqcup l_{1} u_{2} \sqcup u_{1} l_{2} \sqcup u_{1} u_{2}
\end{array}
$$

Example: $\quad[1,3] \quad *^{\#} \quad[5,8] \quad=[5,24]$

$$
\begin{array}{llll}
{[-1,3]} & *^{\#} & {[5,8]} & =[-8,24] \\
{[-1,3]} & *^{\#} & {[-5,8]} & =[-15,24] \\
{[-1,3]} & *^{\#} & {[-5,-8]} & =[-24,5]
\end{array}
$$

Equality test:
$\left[l_{1}, u_{1}\right]=\#^{\sharp}\left[l_{2}, u_{2}\right]=\left\{\begin{array}{lll}{[1,1]} & \text { if } & l_{1}=u_{1}=l_{2}=u_{2} \\ {[0,0]} & \text { if } & u_{1}<l_{2} \text { or } u_{2}<l_{1} \\ {[0,1]} & \text { otherwise } & \end{array}\right.$

Example:

$$
\begin{array}{llll}
{[7,7]} & ==^{\sharp} & {[7,7]} & =[1,1] \\
{[1,7]} & ==^{\sharp} & {[9,12]} & =[0,0] \\
{[1,7]} & ==^{\sharp} & {[1,7]} & =[0,1]
\end{array}
$$

Inequality test:
$\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]=\left\{\begin{array}{lll}{[1,1]} & \text { if } & u_{1}<l_{2} \\ {[0,0]} & \text { if } & u_{2}<l_{1} \\ {[0,1]} & \text { otherwise } & \end{array}\right.$

Example:

$$
\begin{array}{rccc}
{[1,7]} & <^{\sharp}[9,12] & =[1,1] \\
{[9,12]} & <^{\sharp}[1,7] & =[0,0] \\
{[1,7]} & <^{\sharp}[6,8] & =[0,1]
\end{array}
$$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$
Case e is $n: \quad \llbracket n \rrbracket \rho=n \Delta[n, n]=\llbracket n \rrbracket^{\sharp} D$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket \rrbracket D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$
Case e is $n: \quad \llbracket n \rrbracket \rho=n \Delta[n, n]=\llbracket n \rrbracket^{\sharp} D$
Case e is $\square\left(e_{1}, \ldots, e_{n}\right): \quad$ since each $\llbracket e_{i} \rrbracket \rho \Delta \llbracket e_{i} \rrbracket \rrbracket^{\sharp} D$ hence

$$
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket \rho=\square\left(\llbracket e_{1} \rrbracket \rho, \ldots, \llbracket e_{n} \rrbracket \rho\right)
$$

Δ
$\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)=\llbracket \square^{\sharp}\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D$

Finally, the monotonic abstract transformations induced by edges

$$
\llbracket l \rrbracket^{\sharp} \perp=\perp
$$

For $D \neq \perp, \quad \llbracket ; \sharp \rrbracket^{\sharp} D=D$

$$
\begin{aligned}
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket e \rrbracket^{\sharp} D & = \begin{cases}\perp & \text { if } \llbracket e \rrbracket^{\sharp} D=[0,0] \\
D & \text { otherwise }\end{cases}
\end{aligned}
$$

Finally, the monotonic abstract transformations induced by edges

$$
\begin{aligned}
\text { For } D \neq \perp, & \llbracket l \rrbracket^{\sharp} \perp
\end{aligned}=\perp, \begin{array}{r}
\llbracket \sharp \rrbracket^{\sharp} D
\end{array}=D .
$$

Next we must check the condition:

$$
\rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1} .
$$

Finally, the monotonic abstract transformations induced by edges

$$
\begin{aligned}
\text { For } D \neq \perp, & \llbracket l \rrbracket^{\sharp} \perp
\end{aligned}=\perp, \begin{array}{r}
\llbracket \rrbracket^{\sharp} D
\end{array}=D .
$$

Next we must check the condition:

$$
\rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1} .
$$

Clearly $D \neq \perp$ here.

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

Case l is $x=e$;

$$
\rho_{1}=\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \text { and } \quad D_{1}=D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\}
$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_{1} \Delta D_{1}$.

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

Case l is $x=e$;

$$
\rho_{1}=\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \text { and } \quad D_{1}=D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\}
$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_{1} \Delta D_{1}$.
Case e is some condition e
Since the tranformation $\llbracket e \rrbracket \rho$ is defined, hence the expression evaluation $\llbracket e \rrbracket \rho \neq 0$, and $\rho_{1}=\rho$.

Since $\rho \Delta D$, hence the abstract expression evaluation $\llbracket e \rrbracket^{\sharp} D \neq[0,0]$, and $D_{1}=D$.

Recall, for a path $\pi=k_{1} \ldots k_{n}$,

$$
\begin{aligned}
& \llbracket \pi \rrbracket \rho=\left(\llbracket k_{n} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right) \rho \\
& \llbracket \pi \rrbracket^{\sharp} D=\left(\llbracket k_{n} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}\right) D
\end{aligned}
$$

We conclude from above:
if $\rho \Delta D$ and $\llbracket \pi \rrbracket \rho$ is defined then $\llbracket \pi \rrbracket \rho \Delta \llbracket \pi \rrbracket^{\sharp} D$.

Merge over All Paths (MOP):

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} \mathrm{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

For any initial concrete state ρ and path π : start $\rightarrow^{*} v$, if $\llbracket \pi \rrbracket \rho$ is defined then

$$
\llbracket \pi \rrbracket \rho \quad \Delta \quad \mathcal{D}^{*}[v]
$$

Hence $\mathcal{D}^{*}[v]$ abstracts all states possible at node v.

Merge over All Paths (MOP):

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} \mathrm{T} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

For any initial concrete state ρ and path π : start $\rightarrow^{*} v$, if $\llbracket \pi \rrbracket \rho$ is defined then

$$
\llbracket \pi \rrbracket \rho \quad \Delta \quad \mathcal{D}^{*}[v]
$$

Hence $\mathcal{D}^{*}[v]$ abstracts all states possible at node v.
To compute it, we use the constraint system:

$$
\begin{array}{ll}
\mathcal{D}[\text { start }] & \sqsupseteq \top \\
\mathcal{D}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp} \mathcal{D}[u] \quad \text { for edge } k=(u, l, v)
\end{array}
$$

Merge over All Paths (MOP):

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} \mathrm{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

For any initial concrete state ρ and path π : start $\rightarrow^{*} v$, if $\llbracket \pi \rrbracket \rho$ is defined then

$$
\llbracket \pi \rrbracket \rho \quad \Delta \quad \mathcal{D}^{*}[v]
$$

Hence $\mathcal{D}^{*}[v]$ abstracts all states possible at node v.
To compute it, we use the constraint system:

$$
\begin{array}{ll}
\mathcal{D}[\text { start }] & \sqsupseteq \top \\
\mathcal{D}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp} \mathcal{D}[u] \quad \text { for edge } k=(u, l, v)
\end{array}
$$

How are the two related?

Merge over All Paths (MOP):

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Theorem:
Let \mathcal{D} be the smallest solution of the constraint system

$$
\begin{array}{ll}
\mathcal{D}[\text { start }] & \sqsupseteq D_{0} \\
\mathcal{D}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp} \mathcal{D}[u] \quad \text { for edge } k=(u, l, v)
\end{array}
$$

Then we have

$$
\mathcal{D}[v] \sqsupseteq \mathcal{D}^{*}[v] \quad \text { for every } v
$$

In other words: $\mathcal{D}[v] \sqsupseteq \llbracket \pi \rrbracket^{\sharp} D_{0} \quad$ for every π : start $\rightarrow^{*} v$

Proof: induction on the length of π :

Proof: induction on the length of π :

Case $\pi=\epsilon$ (empty path).

Proof: induction on the length of π :

Case $\pi=\epsilon$ (empty path).

$$
\llbracket \pi \rrbracket^{\sharp} D_{0}=D_{0} \sqsubseteq \mathcal{D}[\text { start }]
$$

Proof: induction on the length of π :

Case $\pi=\epsilon$ (empty path).

$$
\llbracket \pi \rrbracket^{\sharp} D_{0}=D_{0} \sqsubseteq \mathcal{D}[\text { start }]
$$

Induction step: $\pi=\pi^{\prime} k$ for $k=(u, l, v)$.

Proof: induction on the length of π :

Case $\pi=\epsilon$ (empty path).

$$
\llbracket \pi \rrbracket^{\sharp} D_{0}=D_{0} \sqsubseteq \mathcal{D}[\text { start }]
$$

Induction step: $\pi=\pi^{\prime} k$ for $k=(u, l, v)$.

$$
\begin{array}{rlrl}
\llbracket \pi^{\prime} \rrbracket^{\sharp} D_{0} & \sqsubseteq \mathcal{D}[u] & & \text { induction hypothesis } \\
\llbracket \pi \rrbracket^{\sharp} D_{0} & =\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} D_{0}\right) & & \\
& \sqsubseteq \llbracket k \rrbracket^{\sharp}(\mathcal{D}[u]) & & \text { monotonicity } \\
& \sqsubseteq \mathcal{D}[v] & \mathcal{D} \text { is a solution }
\end{array}
$$

Question:

Does the constraint system give us only an upper bound ?

Question:

Does the constraint system give us only an upper bound ?

Answer:

In general yes.

Question:

Does the constraint system give us only an upper bound ?

Answer:

In general yes.
Now let's assume that all the functions $\llbracket k \rrbracket^{\sharp}$ are distributive \ldots

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called

- distributive, when $f(\bigsqcup X)=\bigsqcup\{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_{1}$.
- strict, when $f(\perp)=\perp$.
- total distributive, when f is strict and distributive.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called

- distributive, when $f(\bigsqcup X)=\bigsqcup\{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_{1}$.
- strict, when $f(\perp)=\perp$.
- total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_{1}=\mathbb{D}_{2}=\left(2^{U}, \subseteq\right)$ for some set U.
$f(x)=x \cap A \cup B$ for some $A, B \subseteq U$.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called

- distributive, when $f(\bigsqcup X)=\bigsqcup\{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_{1}$.
- strict, when $f(\perp)=\perp$.
- total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_{1}=\mathbb{D}_{2}=\left(2^{U}, \subseteq\right)$ for some set U.
$f(x)=x \cap A \cup B$ for some $A, B \subseteq U$.
Strictness: $f(\emptyset)=B \Longrightarrow$ strict only if $B=\emptyset$.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called

- distributive, when $f(\bigsqcup X)=\bigsqcup\{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_{1}$.
- strict, when $f(\perp)=\perp$.
- total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_{1}=\mathbb{D}_{2}=\left(2^{U}, \subseteq\right)$ for some set U.
$f(x)=x \cap A \cup B$ for some $A, B \subseteq U$.
Strictness: $f(\emptyset)=B \Longrightarrow$ strict only if $B=\emptyset$.

$$
\begin{aligned}
f(x \cup y) & =(x \cup y) \cap A \cup B \\
& =(x \cap A) \cup(y \cap A) \cup B \\
& =(x \cap A \cup B) \cup(y \cap A \cup B) \quad \text { Yes }
\end{aligned}
$$

Distributivity:

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.
Strictness: $f(\perp)=0+1=1 \neq \perp \quad$ No

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.
Strictness: $f(\perp)=0+1=1 \neq \perp \quad$ No
Distributivity: $f(\bigsqcup X)=1+\bigsqcup X=\bigsqcup\{x+1 \mid x \in X\}=\bigsqcup\{f(x) \mid x \in X\}$ for $\emptyset \neq X \quad$ Yes

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.
Strictness: $f(\perp)=0+1=1 \neq \perp \quad$ No
Distributivity: $f(\bigsqcup X)=1+\bigsqcup X=\bigsqcup\{x+1 \mid x \in X\}=\bigsqcup\{f(x) \mid x \in X\}$ for $\emptyset \neq X \quad$ Yes

Example 3: $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x, y)=x+y$

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.
Strictness: $f(\perp)=0+1=1 \neq \perp \quad$ No
Distributivity: $f(\bigsqcup X)=1+\bigsqcup X=\bigsqcup\{x+1 \mid x \in X\}=\bigsqcup\{f(x) \mid x \in X\}$ for $\emptyset \neq X \quad$ Yes

Example 3: $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x, y)=x+y$
Strictness: $f(\perp)=0+0=0=\perp \quad$ Yes

Example 2: $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x)=x+1$.
Strictness: $f(\perp)=0+1=1 \neq \perp \quad$ No
Distributivity: $f(\bigsqcup X)=1+\bigsqcup X=\bigsqcup\{x+1 \mid x \in X\}=\bigsqcup\{f(x) \mid x \in X\}$ for $\emptyset \neq X \quad$ Yes

Example 3: $\mathbb{D}_{1}=(\mathbb{N} \cup\{\infty\})^{2}, \quad \mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}, \quad f(x, y)=x+y$
Strictness: $f(\perp)=0+0=0=\perp \quad$ Yes
Distributivity: $f((1,4) \sqcup(4,1))=f(4,4)=8 \neq 5=f(1,4) \sqcup f(4,1)$

Assumption: All nodes v are reachable from the node start.
(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations $\llbracket k \rrbracket^{\sharp}$ are distributive then $\mathcal{D}^{*}[v]=\mathcal{D}[v]$ for all v.

Assumption: All nodes v are reachable from the node start.
(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations $\llbracket k \rrbracket^{\sharp}$ are distributive then $\mathcal{D}^{*}[v]=\mathcal{D}[v]$ for all v.

Proof: We show that \mathcal{D}^{*} satisfies the constraint system.
(1) For the start node:

$$
\begin{aligned}
\mathcal{D}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{0} \mid \pi: \text { start } \rightarrow \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket^{\sharp} D_{0} \\
& =D_{0}
\end{aligned}
$$

(1) For the start node:

$$
\begin{aligned}
\mathcal{D}^{*}[\text { start }] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{0} \mid \pi: \text { start } \rightarrow \text { start }\right\} \\
& \sqsupseteq \llbracket \epsilon \rrbracket^{\sharp} D_{0} \\
& =D_{0}
\end{aligned}
$$

(2) For every edge $k=(u, l, v)$

$$
\begin{aligned}
\mathcal{D}^{*}[v] & =\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{0} \mid \pi: \text { start } \rightarrow v\right\} \\
& \sqsupseteq \bigsqcup\left\{\llbracket \pi^{\prime} k \rrbracket^{\sharp} D_{0} \mid \pi^{\prime}: \text { start } \rightarrow u\right\} \\
& =\bigsqcup\left\{\llbracket k \rrbracket^{\sharp}\left(\llbracket \pi^{\prime} \rrbracket^{\sharp} D_{0}\right) \mid \pi^{\prime}: \text { start } \rightarrow u\right\} \\
& =\llbracket k \rrbracket^{\sharp}\left(\sqcup\left\{\llbracket \pi^{\prime} \rrbracket^{\sharp} D_{0} \mid \pi^{\prime}: \text { start } \rightarrow u\right\}\right) \\
& =\llbracket k \rrbracket^{\sharp}\left(\mathcal{D}^{*}[u \rrbracket)\right.
\end{aligned}
$$

since $\left\{\pi^{\prime} \mid \pi^{\prime}:\right.$ start $\left.\rightarrow u\right\}$ is non-empty.

The result does not hold in case of unreachable nodes.

We consider $\mathbb{D}=\mathbb{N} \cup\{\infty\}$ with ordering $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots \sqsubseteq \infty$.
Abstraction relation: $n \Delta a$ iff $n \leq a$.
The abstract transformation for the second edge is defined by $\llbracket k \rrbracket^{\sharp} a=a+1$.
We choose $D_{0}=5$.
We have the constraints $\mathcal{D}[0] \sqsupseteq 5$ and $\mathcal{D}[2] \sqsupseteq \mathcal{D}[1]+1$.
We have

$$
\begin{aligned}
& \mathcal{D}^{*}[2]=\bigsqcup \emptyset=0 \\
& \mathcal{D}[2]=0+1=1
\end{aligned}
$$

