Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice \mathbb{D} , every monotone function $f:\mathbb{D}\to\mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that $f(x) \sqsubseteq x$.

Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice \mathbb{D} , every monotone function $f:\mathbb{D}\to\mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that $f(x) \subseteq x$.

Let $P = \{x \in \mathbb{D} \mid f(x) \sqsubseteq x\}$ (the set of prefixpoints).

The least fixpoint of f is $a = \prod P$.

(1) $a \in P$:

$$f(a) \sqsubseteq f(d) \sqsubseteq d \text{ for all } d \in P.$$

 \implies f(a) is a lower bound of P.

$$\implies f(a) \sqsubseteq a.$$

 \implies a is the least prefixpoint.

$$(2) \quad f(a) = a:$$

$$f(a) \sqsubseteq a$$
, from (1)
$$\implies \qquad f^2(a) \sqsubseteq f(a)$$
, by monotonicity
$$\implies \qquad f(a) \in P$$

$$\implies \qquad a \sqsubseteq f(a)$$

Hence a is the least prefixpoint and is also a fixpoint.

Hence a is also the least fixpoint.

Example 1: Consider partial order $\mathbb{D}_1 = \mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \dots$

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually \mathbb{D}_1 is not a complete lattice.

Example 1: Consider partial order $\mathbb{D}_1 = \mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \dots$

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually \mathbb{D}_1 is not a complete lattice.

Example 2: Now we consider $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$.

This is a complete lattice.

The function f(x) = x+1 is again monotonic.

The only fixpoint is ∞ : $\infty+1=\infty$.

Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

The analysis guarantees e.g. that at node 1 the value of i is always in the interval [0, 12].

We have the set of concrete states $S = (Vars \rightarrow \mathbb{Z})$.

We choose a complete lattice \mathbb{D} of abstract states.

We define an abstraction relation

$$\Delta: \mathcal{S} \times \mathbb{D}$$

with the condition that

The concretization function:

$$\gamma(a) = \{ \rho \mid \rho \ \Delta \ a \}.$$

Example: For a program on two integer variables, $Vars = \{x, y\}$.

The concrete states are from the set $S = (\text{Vars} \to \mathbb{Z})$ (or equivalently \mathbb{Z}^2).

For interval analysis, we choose the complete lattice

$$\mathbb{D}_{\mathbb{I}} = (\mathsf{Vars} \to \mathbb{I})_{\perp} = (\mathsf{Vars} \to \mathbb{I}) \cup \{\perp\}$$

where $\mathbb{I} = \{[l, u] \mid l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{\infty\}, l \leq u\}$ is the set of intervals.

Partial order on \mathbb{I} : $[l_1, u_1] \sqsubseteq [l_2, u_2]$ iff $l_1 \ge l_2$ and $u_1 \le u_2$ (As usual, $-\infty \le n \le \infty$ for all $n \in \mathbb{Z}$.) Partial order on Vars $\to \mathbb{I}$: $D_1 \sqsubseteq D_2$ iff $D_1(x) \sqsubseteq D_2(x)$.

Extension to $(\text{Vars} \to \mathbb{I})_{\perp}$: $\perp \sqsubseteq D$ for all D.

 $(Vars \to \mathbb{I})_{\perp}$ is a complete lattice. $(Vars \to \mathbb{I})$ is not.

In particular we define $[l_1, u_1] \sqcup [l_2, u_2] = [l_1 \sqcap l_2, u_1 \sqcup u_2]$.

⊥ represents the "unreachable state": maps every variable to the "empty interval".

The abstraction relation:

 $\rho \ \Delta \ D$ iff $D \neq \bot$ and $\rho(x) \ \Delta \ D(x)$ for each x.

where $n \ \Delta \ [l, u]$ iff $l \le n \le u$.

The abstraction relation:

$$\rho \ \Delta \ D$$
 iff $D \neq \bot$ and $\rho(x) \ \Delta \ D(x)$ for each x .

where $n \ \Delta \ [l, u]$ iff $l \leq n \leq u$.

This satisfies the required condition:

Suppose ρ Δ D_1 and $D_1 \sqsubseteq D_2$.

$$\implies D_1 \neq \bot \text{ and } D_2 \neq \bot.$$

$$\rho(x)$$
 Δ $D_1(x)$ and $D_1(x) \sqsubseteq D_2(x)$ for each x .

$$\Longrightarrow$$
 $\rho(x)$ Δ $D_1(x)$ for each x .

The concretization function:

$$\gamma(\bot) = \{\}$$

$$\gamma(D) = \{\rho \mid \rho(x) \quad \Delta \quad D(x)\}, \qquad \text{for } D \neq \bot$$

$$\gamma(\{x \mapsto [3, 5], y \mapsto [0, 7]\}) = \qquad \{\{x \mapsto 3, y \mapsto 0\}, \{x \mapsto 3, y \mapsto 1\}, \dots \{x \mapsto 3, y \mapsto 7\}$$

$$\dots \{x \mapsto 5, y \mapsto 0\} \dots \{x \mapsto 5, y \mapsto 7\}\}$$

Abstraction of the partial transformation induced by edges.

Recall the edges k = (u, l, v) induce a partial transformation on concrete states:

$$\llbracket k
rbracket = \llbracket l
rbracket : \mathcal{S} o \mathcal{S}$$

Now on our chosen domain \mathbb{D} we define a monotonic abstract transformation:

$$\llbracket k
rbracket^{\sharp} = \llbracket l
rbracket^{\sharp} : \mathbb{D} o \mathbb{D}$$

The abstract transformation should simulate the concrete transformation:

if $\rho \Delta a$ and $\llbracket l \rrbracket \rho$ is defined then $\llbracket l \rrbracket \rho \Delta \llbracket l \rrbracket^{\sharp} a$.

Abstract transformation for interval analysis.

For concrete operators \square we define monotonic abstract operators \square^{\sharp} such that $x_1 \ \Delta \ a_1 \wedge \ldots \wedge x_n \ \Delta \ a_n \Longrightarrow \square(x_1, \ldots, x_n) \ \Delta \ \square^{\sharp}(a_1, \ldots, a_n)$

addition:
$$[l_1, u_1] +^{\sharp} [l_2, u_2] = [l_1 + l_2, u_1 + u_2].$$

$$- + \infty = \infty$$

$$- + -\infty = \infty$$

$$// \infty + -\infty \text{ is undefined.}$$

substraction:
$$-^{\sharp}$$
 $[l, u] = [-u, -l]$

Multiplication:
$$[l_1, u_1]$$
 ** $[l_2, u_2]$ = $[m, n]$ where
$$m = l_1 l_2 \sqcap l_1 u_2 \sqcap u_1 l_2 \sqcap u_1 u_2$$
$$n = l_1 l_2 \sqcup l_1 u_2 \sqcup u_1 l_2 \sqcup u_1 u_2$$

Example:
$$[1,3]$$
 ** $[5,8]$ = $[5,24]$ $[-1,3]$ ** $[5,8]$ = $[-8,24]$ $[-1,3]$ ** $[-5,8]$ = $[-15,24]$ $[-1,3]$ ** $[-5,-8]$ = $[-24,5]$

Equality test:

$$[l_1, u_1] ==^{\sharp} [l_2, u_2] = \begin{cases} [1, 1] & \text{if} & l_1 = u_1 = l_2 = u_2 \\ [0, 0] & \text{if} & u_1 < l_2 \text{ or } u_2 < l_1 \\ [0, 1] & \text{otherwise} \end{cases}$$

Example:

$$[7,7] ==^{\sharp} [7,7] = [1,1]$$
 $[1,7] ==^{\sharp} [9,12] = [0,0]$
 $[1,7] ==^{\sharp} [1,7] = [0,1]$

Inequality test:

$$[l_1,u_1]<^{\sharp}[l_2,u_2] = \left\{egin{array}{ll} [1,1] & ext{if} & u_1 < l_2 \ [0,0] & ext{if} & u_2 < l_1 \ [0,1] & ext{otherwise} \end{array}
ight.$$

Example:

$$[1,7]$$
 $<^{\sharp}$ $[9,12]$ $= [1,1]$
 $[9,12]$ $<^{\sharp}$ $[1,7]$ $= [0,0]$
 $[1,7]$ $<^{\sharp}$ $[6,8]$ $= [0,1]$

For
$$D \neq \bot$$
,
$$[\![x]\!]^{\sharp} D = D(x)$$

$$[\![n]\!]^{\sharp} D = [n, n]$$

$$[\![\Box(e_1, \dots, e_n)]\!]^{\sharp} D = \Box^{\sharp} ([\![e_1]\!]^{\sharp} D, \dots, [\![e_n]\!]^{\sharp} D)$$

For
$$D \neq \bot$$
,
$$[\![x]\!]^{\sharp} D = D(x)$$

$$[\![n]\!]^{\sharp} D = [\![n,n]\!]$$

$$[\![\Box(e_1,\ldots,e_n)]\!]^{\sharp} D = \Box^{\sharp}([\![e_1]\!]^{\sharp} D,\ldots,[\![e_n]\!]^{\sharp} D)$$
 Fact:
$$\rho \ \Delta \ D \ \text{and} \ [\![e]\!] \ \rho \ \text{is defined} \Longrightarrow [\![e]\!] \ \rho \ \Delta \ [\![e]\!]^{\sharp} D.$$

For
$$D \neq \bot$$
,
$$[\![x]\!]^{\sharp} \ D = D(x)$$

$$[\![n]\!]^{\sharp} \ D = [\![n,n]\!]$$

$$[\![\Box(e_1,\ldots,e_n)]\!]^{\sharp} \ D = \Box^{\sharp}([\![e_1]\!]^{\sharp} \ D,\ldots,[\![e_n]\!]^{\sharp} \ D)$$
 Fact:
$$\rho \ \Delta \ D \ \text{and} \ [\![e]\!] \ \rho \ \text{is defined} \Longrightarrow [\![e]\!] \ \rho \ \Delta \ [\![e]\!]^{\sharp} \ D.$$
 Case e is x : since $\rho \ \Delta \ D$ hence $[\![x]\!] \ \rho = \rho(x) \ \Delta \ D(x) = [\![x]\!]^{\sharp} \ D$

For
$$D \neq \bot$$
,
$$[\![x]\!]^{\sharp} D = D(x)$$

$$[\![n]\!]^{\sharp} D = [\![n, n]\!]$$

$$[\![\Box(e_1, \dots, e_n)]\!]^{\sharp} D = \Box^{\sharp} ([\![e_1]\!]^{\sharp} D, \dots, [\![e_n]\!]^{\sharp} D)$$
 Fact:
$$\rho \ \Delta \ D \ \text{and} \ [\![e]\!] \ \rho \ \text{is defined} \Longrightarrow [\![e]\!] \ \rho \ \Delta \ [\![e]\!]^{\sharp} D.$$
 Case e is x :
$$\text{since } \rho \ \Delta \ D \ \text{hence} \ [\![x]\!] \ \rho = \rho(x) \ \Delta \ D(x) = [\![x]\!]^{\sharp} D$$
 Case e is n :
$$[\![n]\!] \ \rho = n \ \Delta \ [\![n, n]\!] = [\![n]\!]^{\sharp} D$$

For
$$D \neq \bot$$
,
$$[\![x]\!]^{\sharp} D = D(x)$$

$$[\![n]\!]^{\sharp} D = [n, n]$$

$$[\![\Box(e_1, \dots, e_n)]\!]^{\sharp} D = \Box^{\sharp} ([\![e_1]\!]^{\sharp} D, \dots, [\![e_n]\!]^{\sharp} D)$$
 Fact:
$$\rho \ \Delta \ D \ \text{and} \ [\![e]\!] \ \rho \ \text{is defined} \Longrightarrow [\![e]\!] \ \rho \ \Delta \ [\![e]\!]^{\sharp} D.$$
 Case e is x : since $\rho \ \Delta \ D \ \text{hence} \ [\![x]\!] \ \rho = \rho(x) \ \Delta \ D(x) = [\![x]\!]^{\sharp} D.$ Case e is n :
$$[\![n]\!] \ \rho = n \ \Delta \ [\![n, n]\!] = [\![n]\!]^{\sharp} D$$
 Case e is $\Box(e_1, \dots, e_n)$: since each $[\![e_i]\!] \ \rho \ \Delta \ [\![e_i]\!]^{\sharp} D \ \text{hence}$
$$[\![\Box(e_1, \dots, e_n)]\!] \ \rho = \Box([\![e_1]\!] \ \rho, \dots, [\![e_n]\!] \ \rho)$$

$$\Delta$$

$$\Box^{\sharp}([\![e_1]\!]^{\sharp} D, \dots, [\![e_n]\!]^{\sharp} D) = [\![\Box^{\sharp}(e_1, \dots, e_n)]\!]^{\sharp} D$$

Finally, the monotonic abstract transformations induced by edges

Finally, the monotonic abstract transformations induced by edges

$$\begin{bmatrix} l \end{bmatrix}^{\sharp} \perp = \perp$$
For $D \neq \perp$,
$$\begin{bmatrix} \vdots \end{bmatrix}^{\sharp} D = D$$

$$\begin{bmatrix} x = e \end{bmatrix}^{\sharp} D = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\llbracket e \rrbracket^{\sharp} D = \begin{cases} \perp & \text{if } \llbracket e \rrbracket^{\sharp} D = [0, 0] \\ D & \text{otherwise} \end{cases}$$

Next we must check the condition:

$$\rho \ \Delta \ D \ \wedge \ \llbracket l \rrbracket \ \rho = \rho_1 \ \wedge \ \llbracket l \rrbracket^{\sharp} \ D = D_1 \ \Longrightarrow \ \rho_1 \ \Delta \ D_1.$$

Finally, the monotonic abstract transformations induced by edges

$$\begin{bmatrix} l \end{bmatrix}^{\sharp} \perp = \perp$$
For $D \neq \perp$,
$$\begin{bmatrix} \vdots \end{bmatrix}^{\sharp} D = D$$

$$\begin{bmatrix} x = e \end{bmatrix}^{\sharp} D = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\llbracket e \rrbracket^{\sharp} D = \begin{cases} \perp & \text{if } \llbracket e \rrbracket^{\sharp} D = [0, 0] \\ D & \text{otherwise} \end{cases}$$

Next we must check the condition:

$$\rho \ \Delta \ D \ \wedge \ \llbracket l \rrbracket \ \rho = \rho_1 \ \wedge \ \llbracket l \rrbracket^{\sharp} \ D = D_1 \ \Longrightarrow \ \rho_1 \ \Delta \ D_1.$$

Clearly $D \neq \bot$ here.

To check: $\rho \Delta D \wedge [\![l]\!] \rho = \rho_1 \wedge [\![l]\!]^{\sharp} D = D_1 \implies \rho_1 \Delta D_1.$ Case l is ;

$$\rho_1 = \rho \quad \Delta \quad D = D_1.$$

To check: $\rho \ \Delta \ D \ \wedge \ \llbracket l \rrbracket \ \rho = \rho_1 \ \wedge \ \llbracket l \rrbracket^{\sharp} \ D = D_1 \ \Longrightarrow \ \rho_1 \ \Delta \ D_1.$

Case l is;

$$\rho_1 = \rho \quad \Delta \quad D = D_1.$$

Case l is x = e;

$$\rho_1 = \rho \oplus \{x \mapsto \llbracket e \rrbracket \ \rho\} \quad \text{and} \quad D_1 = D \oplus \{x \mapsto \llbracket e \rrbracket^\sharp \ D\}$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_1 \Delta D_1$.

To check: $\rho \ \Delta \ D \ \wedge \ \llbracket l \rrbracket \ \rho = \rho_1 \ \wedge \ \llbracket l \rrbracket^{\sharp} \ D = D_1 \ \Longrightarrow \ \rho_1 \ \Delta \ D_1.$

Case l is;

$$\rho_1 = \rho \quad \Delta \quad D = D_1.$$

Case l is x = e;

$$\rho_1 = \rho \oplus \{x \mapsto \llbracket e \rrbracket \ \rho\} \quad \text{and} \quad D_1 = D \oplus \{x \mapsto \llbracket e \rrbracket^\sharp \ D\}$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_1 \Delta D_1$.

Case e is some condition e

Since the tranformation $\llbracket e \rrbracket \rho$ is defined,

hence the expression evaluation $\llbracket e \rrbracket \ \rho \neq 0$, and $\rho_1 = \rho$.

Since ρ Δ D,

hence the abstract expression evaluation $[e]^{\sharp} D \neq [0,0]$, and $D_1 = D$.

Recall, for a path $\pi = k_1 \dots k_n$,

$$\llbracket \pi
rbracket
ho = (\llbracket k_n
rbracket
ho \ldots \circ \llbracket k_1
rbracket)
ho$$

$$\llbracket \pi
rbracket^\sharp D = (\llbracket k_n
rbracket^\sharp \circ \ldots \circ \llbracket k_1
rbracket^\sharp) D$$

We conclude from above:

if $\rho \ \Delta \ D$ and $\llbracket \pi \rrbracket \ \rho$ is defined then $\llbracket \pi \rrbracket \ \rho \ \Delta \ \llbracket \pi \rrbracket^{\sharp} \ D$.

$$\mathcal{D}^*[v] = igsqcup \{ \llbracket \pi
rbracket^\sharp \; \top \mid \pi : start
ightarrow^* \; v \}$$

For any initial concrete state ρ and path $\pi: start \to^* v$, if $[\![\pi]\!]$ ρ is defined then

$$\llbracket \boldsymbol{\pi} \rrbracket \ \boldsymbol{\rho} \quad \Delta \quad \mathcal{D}^*[\boldsymbol{v}]$$

Hence $\mathcal{D}^*[v]$ abstracts all states possible at node v.

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket\pi
rbracket^\sharp \; \top \; | \; \pi: start
ightarrow^* \; v\}$$

For any initial concrete state ρ and path $\pi: start \to^* v$, if $[\![\pi]\!]$ ρ is defined then

$$\llbracket \pi \rrbracket \hspace{0.1cm}
ho \hspace{0.1cm} \hspace{0.1cm}$$

Hence $\mathcal{D}^*[v]$ abstracts all states possible at node v.

To compute it, we use the constraint system:

$$egin{array}{lll} \mathcal{D}[start] & \sqsupseteq & \top \ & \mathcal{D}[v] & \sqsupseteq & \llbracket k
bracket^{\sharp} \mathcal{D}[u] & ext{for edge } k = (u,l,v) \end{array}$$

$$\mathcal{D}^*[v] = \bigsqcup\{\llbracket\pi
rbracket^\sharp \; \top \; | \; \pi: start
ightarrow^* \; v\}$$

For any initial concrete state ρ and path $\pi: start \to^* v$, if $[\![\pi]\!]$ ρ is defined then

$$\llbracket \pi \rrbracket \hspace{0.1cm}
ho \hspace{0.1cm} \Delta \hspace{0.1cm} \mathcal{D}^{*}[v]$$

Hence $\mathcal{D}^*[v]$ abstracts all states possible at node v.

To compute it, we use the constraint system:

$$egin{array}{lll} \mathcal{D}[start] & \sqsupseteq & \top \ & \mathcal{D}[v] & \sqsupseteq & \llbracket k
bracket^{\sharp} \mathcal{D}[u] & ext{for edge } k = (u,l,v) \end{array}$$

How are the two related?

$$\mathcal{D}^*[v] = ig| \left\{ \llbracket \pi
rbracket^\sharp D_0 \mid \pi : start
ightarrow^* v
ight\}$$

Theorem:

Kam, Ullman 1975

Let \mathcal{D} be the smallest solution of the constraint system

$$egin{aligned} \mathcal{D}[start] & \sqsupseteq D_0 \ & \mathcal{D}[v] & \sqsupseteq \llbracket k
rbracket^\sharp \mathcal{D}[u] & ext{for edge } k = (u,l,v) \end{aligned}$$

Then we have

$$\mathcal{D}[\underline{v}] \supseteq \mathcal{D}^*[\underline{v}]$$
 for every \underline{v}

In other words: $\mathcal{D}[v] \supseteq \llbracket \pi \rrbracket^{\sharp} D_0$ for every $\pi : start \to^* v$

Proof: induction on the length of π :

Proof: induction on the length of π :

Case $\pi = \epsilon$ (empty path).

Proof: induction on the length of π :

Case
$$\pi = \epsilon$$
 (empty path).
$$\llbracket \pi \rrbracket^{\sharp} \ D_0 = D_0 \sqsubseteq \mathcal{D}[start]$$

Proof: induction on the length of π :

Case
$$\pi = \epsilon$$
 (empty path).
$$\llbracket \pi \rrbracket^{\sharp} \ D_0 = D_0 \sqsubseteq \mathcal{D}[start]$$

Induction step: $\pi = \pi' k$ for k = (u, l, v).

Proof: induction on the length of π :

 $\sqsubseteq \mathcal{D}[v]$

Case
$$\pi = \epsilon$$
 (empty path).
$$\llbracket \pi \rrbracket^{\sharp} \ D_0 = D_0 \sqsubseteq \mathcal{D}[start]$$
Induction step: $\pi = \pi' k$ for $k = (u, l, v)$.
$$\llbracket \pi' \rrbracket^{\sharp} \ D_0 \sqsubseteq \mathcal{D}[u] \qquad \text{induction hypothesis}$$

$$\llbracket \pi \rrbracket^{\sharp} \ D_0 = \llbracket k \rrbracket^{\sharp} \ (\llbracket \pi' \rrbracket^{\sharp} \ D_0)$$

$$\sqsubseteq \llbracket k \rrbracket^{\sharp} \ (\mathcal{D}[u]) \qquad \text{monotonicity}$$

 \mathcal{D} is a solution

Question:

Does the constraint system give us only an upper bound?

Question:

Does the constraint system give us only an upper bound?

Answer:

In general yes.

Question:

Does the constraint system give us only an upper bound?

Answer:

In general yes.

Now let's assume that all the functions $[\![k]\!]^{\sharp}$ are distributive ...

- distributive, when $f(\coprod X) = \coprod \{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_1$.
- strict, when $f(\bot) = \bot$.
- ullet total distributive, when f is strict and distributive.

- distributive, when $f(\coprod X) = \coprod \{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_1$.
- strict, when $f(\bot) = \bot$.
- \bullet total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_1 = \mathbb{D}_2 = (2^U, \subseteq)$ for some set U.

 $f(x) = x \cap A \cup B$ for some $A, B \subseteq U$.

- distributive, when $f(\coprod X) = \coprod \{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_1$.
- strict, when $f(\bot) = \bot$.
- \bullet total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_1 = \mathbb{D}_2 = (2^U, \subseteq)$ for some set U.

 $f(x) = x \cap A \cup B$ for some $A, B \subseteq U$.

Strictness: $f(\emptyset) = B \Longrightarrow \text{strict only if } B = \emptyset.$

- distributive, when $f(\coprod X) = \coprod \{f(x) \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}_1$.
- strict, when $f(\bot) = \bot$.
- \bullet total distributive, when f is strict and distributive.

Example 1: $\mathbb{D}_1 = \mathbb{D}_2 = (2^U, \subseteq)$ for some set U.

 $f(x) = x \cap A \cup B$ for some $A, B \subseteq U$.

Strictness: $f(\emptyset) = B \Longrightarrow \text{strict only if } B = \emptyset.$

$$f(x \cup y) = (x \cup y) \cap A \cup B$$

Distributivity:
$$= (x \cap A) \cup (y \cap A) \cup B$$
$$= (x \cap A \cup B) \cup (y \cap A \cup B)$$
Y

Strictness: $f(\bot) = 0+1 = 1 \neq \bot$ No

Strictness: $f(\bot) = 0+1 = 1 \neq \bot$ No

Distributivity: $f(\bigsqcup X) = 1 + \bigsqcup X = \bigsqcup \{x+1 \mid x \in X\} = \bigsqcup \{f(x) \mid x \in X\}$ for $\emptyset \neq X$ Yes

Strictness: $f(\bot) = 0+1 = 1 \neq \bot$ No

Distributivity: $f(\coprod X) = 1 + \coprod X = \coprod \{x+1 \mid x \in X\} = \coprod \{f(x) \mid x \in X\}$ for $\emptyset \neq X$ Yes

Example 3: $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, f(x,y) = x+y

Strictness: $f(\perp) = 0+1 = 1 \neq \perp$ No

Distributivity: $f(\bigsqcup X) = 1 + \bigsqcup X = \bigsqcup \{x+1 \mid x \in X\} = \bigsqcup \{f(x) \mid x \in X\}$ for

 $\emptyset \neq X$ Yes

Example 3: $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, f(x,y) = x+y

Strictness: $f(\bot) = 0 + 0 = 0 = \bot$ Yes

Strictness: $f(\perp) = 0+1 = 1 \neq \perp$ No

Distributivity: $f(\bigsqcup X) = 1 + \bigsqcup X = \bigsqcup \{x+1 \mid x \in X\} = \bigsqcup \{f(x) \mid x \in X\}$ for

 $\emptyset \neq X$ Yes

Example 3: $\mathbb{D}_1 = (\mathbb{N} \cup \{\infty\})^2$, $\mathbb{D}_2 = \mathbb{N} \cup \{\infty\}$, f(x,y) = x+y

Strictness: $f(\bot) = 0 + 0 = 0 = \bot$ Yes

Distributivity: $f((1,4) \sqcup (4,1)) = f(4,4) = 8 \neq 5 = f(1,4) \sqcup f(4,1)$ No

Assumption: All nodes v are reachable from the node start. (Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations $[\![k]\!]^{\sharp}$ are distributive then $\mathcal{D}^*[v] = \mathcal{D}[v]$ for all v.

Assumption: All nodes v are reachable from the node start.

(Unreachable nodes can always be deleted.)

Theorem: If all the edge transofrmations $[\![k]\!]^{\sharp}$ are distributive then $\mathcal{D}^*[v] = \mathcal{D}[v]$ for all v.

Proof: We show that \mathcal{D}^* satisfies the constraint system.

(1) For the *start* node:

$$\mathcal{D}^*[start] = \bigsqcup \{ \llbracket \pi
rbracket^\sharp \ D_0 \mid \pi : start o start \}$$
 $\equiv \llbracket \epsilon
rbracket^\sharp \ D_0$
 $= D_0$

(1) For the *start* node:

$$\mathcal{D}^*[start] = \bigsqcup \{ \llbracket \pi \rrbracket^\sharp \ D_0 \mid \pi : start \to start \}$$
$$\supseteq \llbracket \epsilon \rrbracket^\sharp \ D_0$$
$$= D_0$$

(2) For every edge $\mathbf{k} = (\mathbf{u}, \mathbf{l}, \mathbf{v})$

$$egin{aligned} \mathcal{D}^*[v] &= igsqcup \{ \llbracket \pi
rbracket^\sharp D_0 \mid \pi : start
ightarrow v \} \ &\supseteq igsqcup \{ \llbracket \pi'k
rbracket^\sharp D_0 \mid \pi' : start
ightarrow u \} \ &= igsqcup \{ \llbracket k
rbracket^\sharp (\llbracket \pi'
rbracket^\sharp D_0) \mid \pi' : start
ightarrow u \} \ &= racket^\sharp (racket \{ \llbracket \pi'
rbracket^\sharp D_0 \mid \pi' : start
ightarrow u \}) \ &= racket k
rbracket^\sharp (\mathcal{D}^*[u]) \end{aligned}$$

since $\{\pi' \mid \pi' : start \to u\}$ is non-empty.

The result does not hold in case of unreachable nodes.

We consider $\mathbb{D} = \mathbb{N} \cup \{\infty\}$ with ordering $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots \sqsubseteq \infty$.

Abstraction relation: $n \Delta a$ iff $n \leq a$.

The abstract transformation for the second edge is defined by $[\![k]\!]^{\sharp}$ a=a+1. We choose $D_0=5$.

We have the constraints $\mathcal{D}[0] \supseteq 5$ and $\mathcal{D}[2] \supseteq \mathcal{D}[1]+1$.

We have

$$\mathcal{D}^*[2] = \bigsqcup \emptyset = 0$$

$$\mathcal{D}[2] = 0 + 1 = 1$$