
Typed Assembly Language (TAL)
Morrisett et al.

• A generic approach to safe compiled code.

• Based on the concept of type safety.

• Use type preserving compilation to transform type safe source code to type

safe compiled code.

• Can be combined with the idea of proof carrying code.

209

A first language: TAL-0

Deals with control flow safety: no jumps to arbitrary machine addresses.

210

A first language: TAL-0

Deals with control flow safety: no jumps to arbitrary machine addresses.

Syntax of programs

We assume a fixed finite set of registers:

r ::= r1 | . . . | rk

210-a

A first language: TAL-0

Deals with control flow safety: no jumps to arbitrary machine addresses.

Syntax of programs

We assume a fixed finite set of registers:

r ::= r1 | . . . | rk

Operands:

ν ::=

n integer

| l label

| r register

Operands other than registers are called values (i.e. registers and integers).

210-b

Instructions

ι ::=

rd := ν assignment

| rd := rs + ν addition

| if r jump ν conditional jump

211

Instructions

ι ::=

rd := ν assignment

| rd := rs + ν addition

| if r jump ν conditional jump

instruction sequences

I ::= jump ν | ι; I

211-a

Instructions

ι ::=

rd := ν assignment

| rd := rs + ν addition

| if r jump ν conditional jump

instruction sequences

I ::= jump ν | ι; I

• Instruction sequences have at the end an unconditional jump to another

instruction sequence pointer to by some label, and other instructions before.

• As yet, no infinite memory (except for code).

211-b

An example for computing square: r4 contains the return address

square : r3 := 0;

r2 := r1;

jump loop

loop : if r1 jump done;

r3 := r2 + r3;

r1 := r1 + −1;

jump loop

done : jump r4

The example has three instruction sequences, and a label corresponding to

each of them.

212

Evaluation: the TAL-0 abstract machine

• the abstract machine contains the code and data.

• an evaluation step changes the state (code and data) of the abstract machine.

• A register file R maps each register r to some value (integer or label) R(r).

R ::= {r1 7→ ν1, . . . , rk 7→ νk}

(each νi is a value)

• For TAL-0, the only heap values are instruction sequences.

h ::= I

Extensions of TAL-0 will need to consider other kinds of heap values.

213

• A heap H is a partial map: H maps some labels l to heap values H(l).

H ::= {l1 7→ h1, . . . lm 7→ hm}

An abstract machine state consists of a heap, a register file and the current

sequence being executed.

M ::= (H,R, I)

214

The previous example has three instruction sequences

I1 = r3 := 0; r2 := r1; jump loop

I2 = if r1 jump done; r3 := r2 + r3; r1 := r1 + −1; jump loop

I3 = jump r4

We have the heap H0 = {prod 7→ I1, loop 7→ I2, done 7→ I3}.

The starting state of the machine is supposed to be of the form

M0 = (H0, R0, I1)

where R0(r1) = n is an integer and R0(r4) is a label.

A possible execution sequence: . . .

215

H0, {r1 7→ 2, r2 7→ 0, r3 7→ 0, r4 7→ l}, I1

H0, {r1 7→ 2, r2 7→ 0, r3 7→ 0, r4 7→ l}, r2 := r1; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, I2

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 0 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 2, r2 7→ 2, r3 7→ 2 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, I2

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 2 r4 7→ l}, r3 := r2 + r3; r1 := r1 + −1; jump loop

H0, {r1 7→ 1, r2 7→ 2, r3 7→ 4 r4 7→ l}, r1 := r1 + −1; jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump loop

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, I2

H0, {r1 7→ 0, r2 7→ 2, r3 7→ 4 r4 7→ l}, jump r4

216

As usual, we formalize this using evaluation rules.

217

As usual, we formalize this using evaluation rules.

H(R̂(ν)) = I
(E-Jump)

(H,R, jump ν) −→ (H,R, I)

where the lookup function R̂ returns the value corresponding to an operand:

R̂(r)=R(r)

R̂(n)=n

R̂(l)=l

The JUMP instruction loads a new instruction sequence which should then be

executed.

The machine is stuck if R̂(ν) is not a label, or if the label does not correspond

to some instruction sequence in the heap.

217-a

Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R, rd := ν; I) −→ (H,R ⊕ {rd 7→ R̂(ν)}, I) (E-Mov)

218

Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R, rd := ν; I) −→ (H,R ⊕ {rd 7→ R̂(ν)}, I) (E-Mov)

R(rs) = n1 R̂(ν) = n2
(E-Add)

(H,R, rd := rs + ν; I) −→ (H,R ⊕ {rd 7→ n1 + n2}, I)

(The machine is stuck in the second case if R(rs) or R̂(ν) is not an integer.)

218-a

The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(r) = 0 H(R̂(ν)) = I ′

(E-IfEq)
(H,R, if r jump ν; I) −→ (H,R, I ′)

219

The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(r) = 0 H(R̂(ν)) = I ′

(E-IfEq)
(H,R, if r jump ν; I) −→ (H,R, I ′)

R(r) = n n 6= 0
(E-IfNeq)

(H,R, if r jump ν; I) −→ (H,R, I)

(The machine is stuck if R(r) is not an integer or, in the first case, if R̂(ν) is

not a label.)

219-a

Consider the following simple code:

l : r1 := 5;

jump r1

220

Consider the following simple code:

l : r1 := 5;

jump r1

Define instruction sequence I = r1 := 5; jump r1 and heap H = {l 7→ I}.

Corresponding to the above code, starting with register file R = {r1 7→ 0} we

have the evaluation step

(H, {r1 7→ 0}, I) −→ (H, {r1 7→ 5}, jump r1)

220-a

Consider the following simple code:

l : r1 := 5;

jump r1

Define instruction sequence I = r1 := 5; jump r1 and heap H = {l 7→ I}.

Corresponding to the above code, starting with register file R = {r1 7→ 0} we

have the evaluation step

(H, {r1 7→ 0}, I) −→ (H, {r1 7→ 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because r1

stores an integer instead of a label.

220-b

Consider the following simple code:

l : r1 := 5;

jump r1

Define instruction sequence I = r1 := 5; jump r1 and heap H = {l 7→ I}.

Corresponding to the above code, starting with register file R = {r1 7→ 0} we

have the evaluation step

(H, {r1 7→ 0}, I) −→ (H, {r1 7→ 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because r1

stores an integer instead of a label.

Hence to filter out such bad programs, we need to introduce typing rules.

220-c

Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type Γ = {r1 : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump r1 fails to type check because Γ(r1) is Int

instead of Code.

Hence the code is rejected, as desired.

221

Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type Γ = {r1 : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump r1 fails to type check because Γ(r1) is Int

instead of Code.

Hence the code is rejected, as desired.

Is this idea enough?

221-a

Consider the following code:

l : r1 := 5;

r2 := l′;

jump r2

Label l′ points to some other instruction sequence I ′.

I = r1 := 5; r2 := l′; jump r2 and heap H = {l : I, l′ 7→ I ′}.

Should the above code be well-typed? After the first two instructions, the

register file type will be {r1 : Int, r2 : Code}, as it should be.

Answer: depends on I ′. . .

222

Consider the code

l′ : jump r1;

Clearly the instruction sequence I ′ = jump r1 expects a label in r1 instead of

an integer.

Hence the code at l is not well-typed.

Solution:

With each instruction sequence, associate a register file type that is expected

at the beginning of that instruction sequence.

Secondly, enrich the notion of types. Instead of having a simple type Code for

labels, we have types of the form Code(Γ) where Γ is a register file type.

223

We further choose a type Top which is the super type of all types.

In the previous example, the instruction sequence I ′ will have type

{r1 : Code{r1 : Top, r2 : Top}}

The instruction sequence I ′ expects r1 to contain label to some instruction

sequence (I) which expects both registers to contain ”anything”.

The instruction sequence I has type {r1 : Top, r2 : Top}.

After executing the first two instructions of I, the register file type becomes

{r1 : Int, r2 : Code{. . .}.

Hence the jump instruction doesn’t type check.

224

The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

225

The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

225-a

The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

Typing of operands

The type judgment

Ψ,Γ ⊢ ν : τ

means: under heap type Ψ and register file type Γ, the operand ν has type τ .

225-b

The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

Typing of operands

The type judgment

Ψ,Γ ⊢ ν : τ

means: under heap type Ψ and register file type Γ, the operand ν has type τ .

Ψ,Γ ⊢ n : Int (T-Int)

225-c

The TAL-0 type system

τ ::= operand types

Int integers

Code(Γ) labels

Top ”any” type

Γ ::= register file types

{r1 : τ1, . . . , rk : τk}

Ψ ::= heap types

{l1 : τ1, . . . , lm : τm}

Typing of operands

The type judgment

Ψ,Γ ⊢ ν : τ

means: under heap type Ψ and register file type Γ, the operand ν has type τ .

Ψ,Γ ⊢ n : Int (T-Int)
l : τ ∈ Ψ

Ψ,Γ ⊢ l : τ
(T-Lab)

225-d

Ψ,Γ ⊢ r : Γ(r) (T-Reg)

226

Ψ,Γ ⊢ r : Γ(r) (T-Reg)

Ψ,Γ ⊢ ν : τ τ ′ ⊑ τ
(T-Sub)

Ψ,Γ ⊢ ν : τ ′

226-a

Ψ,Γ ⊢ r : Γ(r) (T-Reg)

Ψ,Γ ⊢ ν : τ τ ′ ⊑ τ
(T-Sub)

Ψ,Γ ⊢ ν : τ ′

where

τ ⊑1 τ for every τ

τ ⊑1 Top for every τ

Code(Γ1) ⊑ Code(Γ2) iff Γ1(r) ⊑1 Γ2(r) for every register r

Top represents ”any” type, hence can be replaced by any type.

226-b

Typing of instructions

The type judgment

Ψ ⊢ ι : Γ1 → Γ2

means: under heap type Ψ, the instruction ι modifies the register file type from

Γ1 to Γ2.

227

Typing of instructions

The type judgment

Ψ ⊢ ι : Γ1 → Γ2

means: under heap type Ψ, the instruction ι modifies the register file type from

Γ1 to Γ2.

Ψ,Γ ⊢ ν : τ
(T-Mov)

Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

227-a

Typing of instructions

The type judgment

Ψ ⊢ ι : Γ1 → Γ2

means: under heap type Ψ, the instruction ι modifies the register file type from

Γ1 to Γ2.

Ψ,Γ ⊢ ν : τ
(T-Mov)

Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

Ψ,Γ ⊢ rs : Int Ψ,Γ ⊢ ν : Int
(T-Add)

Ψ ⊢ rd := rs + ν : Γ → Γ ⊕ {rd : Int}

The mov and add instructions modify the type of the destination register.

227-b

Ψ,Γ ⊢ rs : Int Ψ,Γ ⊢ ν : Code(Γ)
(T-If)

Ψ ⊢ if rs jump ν : Γ → Γ

Both branches of the if instruction must have the same type.

If the if condition fails then the next instruction is executed with register file

of type Γ.

If the if condition succeeds then the jump should be to some instruction

sequence which expects register file type Γ.

228

Typing of instruction sequences

The type judgment

Ψ : I : Code(Γ)

means: under heap type Ψ, the instruction sequence I expects the register file

to have type Γ at the beginning.

229

Typing of instruction sequences

The type judgment

Ψ : I : Code(Γ)

means: under heap type Ψ, the instruction sequence I expects the register file

to have type Γ at the beginning.

Ψ,Γ ⊢ ν : Code(Γ)
(T-Jump)

Ψ ⊢ jump ν : Code(Γ)

229-a

Typing of instruction sequences

The type judgment

Ψ : I : Code(Γ)

means: under heap type Ψ, the instruction sequence I expects the register file

to have type Γ at the beginning.

Ψ,Γ ⊢ ν : Code(Γ)
(T-Jump)

Ψ ⊢ jump ν : Code(Γ)

Ψ ⊢ ι : Γ1 → Γ2 Ψ ⊢ I : Code(Γ2)
(T-Seq)

Ψ ⊢ ι; I : Code(Γ1)

229-b

Typing of register files, heaps, and machine states

Ψ, ⊢ R(r1) : Γ(r1) . . . Ψ, ⊢ R(rk) : Γ(rk)
(T-Regfile)

Ψ ⊢ R : Γ

means that the register file type is irrelevant here

230

Typing of register files, heaps, and machine states

Ψ, ⊢ R(r1) : Γ(r1) . . . Ψ, ⊢ R(rk) : Γ(rk)
(T-Regfile)

Ψ ⊢ R : Γ

means that the register file type is irrelevant here

∀l ∈ dom(Ψ) · Ψ ⊢ H(l) : Ψ(l)
(T-Heap)

⊢ H : Ψ

dom(Ψ) is the set of labels in the domain of Ψ

230-a

Typing of register files, heaps, and machine states

Ψ, ⊢ R(r1) : Γ(r1) . . . Ψ, ⊢ R(rk) : Γ(rk)
(T-Regfile)

Ψ ⊢ R : Γ

means that the register file type is irrelevant here

∀l ∈ dom(Ψ) · Ψ ⊢ H(l) : Ψ(l)
(T-Heap)

⊢ H : Ψ

dom(Ψ) is the set of labels in the domain of Ψ

⊢ H : Ψ Ψ ⊢ R : Γ Ψ ⊢ I : Code(Γ)
(T-Mach)

⊢ (H,R, I)

The last judgment means that (H,R, I) is a well-typed machine.

230-b

Example

l : r1 := l; r2 := l′; jump r2
︸ ︷︷ ︸

I

l′ : jump r1
︸ ︷︷ ︸

I′

We have the heap H = {l 7→ I, l′ 7→ I ′}.

Define heap type Ψ =







l : Code{r1 : Top, r2 : Top},

l′ : Code{r1 : Ψ(l), r2 : Top}







Define register file types

Γ1 = {r1 : Top, r2 : Top}

Γ2 = {r1 : Ψ(l), r2 : Top}

Γ3 = {r1 : Ψ(l), r2 : Ψ(l′)}

231

claim 1: Ψ ⊢ I : Code(Γ1)

232

claim 1: Ψ ⊢ I : Code(Γ1)

l : Code{r1 : Top, r2 : Top} ∈ Ψ
(T-Lab)

Ψ, Γ1 ⊢ l : Ψ(l)
(T-Mov)

Ψ ⊢ r1 := l : Γ1 → Γ2

232-a

claim 1: Ψ ⊢ I : Code(Γ1)

l : Code{r1 : Top, r2 : Top} ∈ Ψ
(T-Lab)

Ψ, Γ1 ⊢ l : Ψ(l)
(T-Mov)

Ψ ⊢ r1 := l : Γ1 → Γ2

·
·
·

Ψ ⊢ r2 := l′ : Γ2 → Γ3

232-b

claim 1: Ψ ⊢ I : Code(Γ1)

l : Code{r1 : Top, r2 : Top} ∈ Ψ
(T-Lab)

Ψ, Γ1 ⊢ l : Ψ(l)
(T-Mov)

Ψ ⊢ r1 := l : Γ1 → Γ2

·
·
·

Ψ ⊢ r2 := l′ : Γ2 → Γ3

Ψ, Γ3 ⊢ r2 : Ψ(l′) Code(Γ3) ⊑ Ψ(l′)
(T-Sub)

Ψ, Γ3 ⊢ r2 : Code(Γ3)
(T-Jump)

Ψ ⊢ jump r2 : Code(Γ3)

Code(Γ3) = Code{r1 : Ψ(l), r2 : Ψ(l′)}

⊑ Ψ(l′) = Code{r1 : Ψ(l), r2 : Top}

because Ψ(l) ⊑1 Ψ(l) and Ψ(l′) ⊑1 Top.

232-c

·
·
·

Ψ ⊢ r1 := l : Γ1 → Γ2

·
·
·

Ψ : r2 := l′ : Γ2 → Γ3

·
·
·

Ψ ⊢ jump r2 : Code(Γ3)
(T-Seq)

Ψ ⊢ r2 := l′; jump r2 : Code(Γ2)
(T-Seq)

Ψ ⊢ I : Code(Γ1)

This proves claim 1.

233

·
·
·

Ψ ⊢ r1 := l : Γ1 → Γ2

·
·
·

Ψ : r2 := l′ : Γ2 → Γ3

·
·
·

Ψ ⊢ jump r2 : Code(Γ3)
(T-Seq)

Ψ ⊢ r2 := l′; jump r2 : Code(Γ2)
(T-Seq)

Ψ ⊢ I : Code(Γ1)

This proves claim 1.

claim 2: Ψ ⊢ I ′ : Code(Γ2)

Ψ, Γ2 ⊢ r1 : Ψ(l) Code(Γ2) ⊑ Ψ(l)
(T-Sub)

Ψ, Γ2 ⊢ r1 : Code(Γ2)
(T-Jump)

Ψ ⊢ jump r1 : Code(Γ2)

233-b

Well typing of the heap

Recall that H = {l 7→ I, l′ 7→ I ′} and Ψ = {l : Code(Γ1), l
′ : Code(Γ2)}.

···
Ψ ⊢ I : Code(Γ1)

···
Ψ ⊢ I ′ : Code(Γ2)

(T-Heap)
⊢ H : Ψ

234

Well typing of the heap

Recall that H = {l 7→ I, l′ 7→ I ′} and Ψ = {l : Code(Γ1), l
′ : Code(Γ2)}.

···
Ψ ⊢ I : Code(Γ1)

···
Ψ ⊢ I ′ : Code(Γ2)

(T-Heap)
⊢ H : Ψ

Well typing of register file

Suppose we want to start running the machine with the register file

R = {r1 7→ 0, r2 7→ 0}

234-a

Well typing of the heap

Recall that H = {l 7→ I, l′ 7→ I ′} and Ψ = {l : Code(Γ1), l
′ : Code(Γ2)}.

···
Ψ ⊢ I : Code(Γ1)

···
Ψ ⊢ I ′ : Code(Γ2)

(T-Heap)
⊢ H : Ψ

Well typing of register file

Suppose we want to start running the machine with the register file

R = {r1 7→ 0, r2 7→ 0}

Define register file type Γ = {r1 : Int, r2 : Int}

234-b

Well typing of the heap

Recall that H = {l 7→ I, l′ 7→ I ′} and Ψ = {l : Code(Γ1), l
′ : Code(Γ2)}.

···
Ψ ⊢ I : Code(Γ1)

···
Ψ ⊢ I ′ : Code(Γ2)

(T-Heap)
⊢ H : Ψ

Well typing of register file

Suppose we want to start running the machine with the register file

R = {r1 7→ 0, r2 7→ 0}

Define register file type Γ = {r1 : Int, r2 : Int}

(T-Int)
Ψ, ⊢ 0 : Int

(T-Int)
Ψ, ⊢ 0 : Int

(TRegfile)
Ψ ⊢ R : Γ

234-c

Suppose the initial instruction sequence we want to execute is I.

We have shown that Ψ ⊢ I : Code(Γ1) (claim 1).

Similarly we show Ψ ⊢ I : Code(Γ).

235

Suppose the initial instruction sequence we want to execute is I.

We have shown that Ψ ⊢ I : Code(Γ1) (claim 1).

Similarly we show Ψ ⊢ I : Code(Γ).

Finally, well typing of the machine

···
⊢ H : Ψ

···
Ψ ⊢ R : Γ

···
Ψ ⊢ I : Code(Γ)

(T-Mach)
⊢ (H,R, I)

235-a

