
The TAL-1 type system

τ ::= operand types

Int | Code(Γ)

| ptr(σ) shared pointer types

| uptr(σ) unique pointer types

| ∀ρ · τ quantification over allocated types

σ ::= allocated types

ǫ empty tuple type

τ one operand

〈σ1, σ2〉 pair

ρ allocated type variable

275



operand types are for operands and allocated data types are for tuples.

As before register file types Γ are of the form {sp : τ , r1 : τ1, . . . , rk : τk} where

τ , τi are operand types.

Similarly heap types Ψ map labels to operand types.

We consider

〈〈σ1, σ2〉, σ3〉 = 〈σ1, 〈σ2, σ3〉〉 = 〈σ1, σ2, σ3〉

〈σ, ǫ〉 = 〈ǫ, σ〉 = σ

. . .

276



Typing rules

277



Typing rules

Tuples
∀1 ≤ i ≤ n · Ψ,Γ ⊢ νi : τi

(T-Tuple)
Ψ,Γ ⊢ 〈ν1, . . . , νn〉 : 〈τ1, . . . , τn〉

277-a



Typing rules

Tuples
∀1 ≤ i ≤ n · Ψ,Γ ⊢ νi : τi

(T-Tuple)
Ψ,Γ ⊢ 〈ν1, . . . , νn〉 : 〈τ1, . . . , τn〉

Ψ,Γ ⊢ h : σ
(T-Uptr)

Ψ,Γ ⊢ uptr(h) : uptr(σ)

277-b



Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,

where now copying of unique pointers should be prevented. Hence we have the

following new rule.
Ψ,Γ ⊢ ν : τ τ 6= uptr(σ)

(T-Mov1)
Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

278



Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,

where now copying of unique pointers should be prevented. Hence we have the

following new rule.
Ψ,Γ ⊢ ν : τ τ 6= uptr(σ)

(T-Mov1)
Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

We add new typing rules for the new instructions.
n ≥ 0

(T-Malloc)
Ψ ⊢ rd := malloc n : Γ → Γ ⊕ {rd : uptr〈Int, . . . , Int

︸ ︷︷ ︸

n times

〉}

malloc creates a unique pointer type.

278-a



Ψ,Γ ⊢ rd : uptr(σ) rd 6= sp
(T-Commit)

Ψ ⊢ commit rd : Γ → Γ ⊕ {rd : ptr(σ)}

commit creates a shared pointer type.

rd stores a (label) pointer to the value which has now been moved into the

heap.

279



Ψ,Γ ⊢ rs : ptr〈τ0, . . . , τn, σ〉
(T-Ld-S)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

280



Ψ,Γ ⊢ rs : ptr〈τ0, . . . , τn, σ〉
(T-Ld-S)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

Ψ,Γ ⊢ rs : uptr〈τ0, . . . , τn, σ〉
(T-Ld-U)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

280-a



Ψ,Γ ⊢ rd : ptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τn τn 6= uptr(σ′)
(T-St-S)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ

Updating shared data should not involve a change in type.

281



Ψ,Γ ⊢ rd : ptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τn τn 6= uptr(σ′)
(T-St-S)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ

Updating shared data should not involve a change in type.

Ψ,Γ ⊢ rd : uptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τ τ 6= uptr(σ′)
(T-St-U)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ ⊕ {rd : uptr〈τ0, . . . , τn−1, τ , σ〉}

281-a



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

282



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

Ψ,Γ ⊢ sp : uptr〈τ1, . . . , τn, σ〉
(T-Sfree)

Ψ ⊢ sfree n : Γ → Γ ⊕ {sp : uptr(σ)}

282-a



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

Ψ,Γ ⊢ sp : uptr〈τ1, . . . , τn, σ〉
(T-Sfree)

Ψ ⊢ sfree n : Γ → Γ ⊕ {sp : uptr(σ)}

Stack underflows are ruled out by the type system.

What about stack overflows??

282-b



The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

283



The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

R(sp) = uptr〈ν0, . . . , νp〉 p + n > MaxStack
(E-Overflow1)

(H,R, salloc n; I) → StackOverflow

Where StackOverflow is a new special machine state.

This is similar to ”error” terms in our previous discussion on type safety.

283-a



The rules for typing instruction sequences, register files, heaps and machine

states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

284



The rules for typing instruction sequences, register files, heaps and machine

states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

Ψ ⊢ I : τ
(T-Gen)

Ψ ⊢ I : ∀ρ · τ

ρ is an allocated type variable possibly occurring in τ .

Type of labels can be instantiated by the following rule.

We replace occurrences of ρ by any desired type τ ′.

Ψ,Γ ⊢ ν : ∀ρ · τ
(T-Inst)

Ψ,Γ ⊢ ν : τ [ρ 7→ τ ′]

284-a



Example

ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

We would like to assign to this instruction sequence, the type

τ = ∀s · Code{Γ} where

Γ = {sp : uptr〈Int, s〉, r1, r2 : Top, r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top}}

where allocated type variable sp represents an arbitrary chunk of memory.

Let Γ1 = Γ ⊕ {r1 : Int} and Γ2 = Γ1 ⊕ {sp : uptr(s)}.

For any heap type Ψ we have the following typing derivation.

285



·
·
·

Ψ, Γ2 ⊢ r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top} Code(Γ2) ⊑ Code{. . .}
(T-Sub)

Ψ, Γ2 ⊢ r3 : Code(Γ2)
(T-Jump)

Ψ ⊢ jump r3 : Code(Γ2)

286



·
·
·

Ψ, Γ2 ⊢ r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top} Code(Γ2) ⊑ Code{. . .}
(T-Sub)

Ψ, Γ2 ⊢ r3 : Code(Γ2)
(T-Jump)

Ψ ⊢ jump r3 : Code(Γ2)

Ψ, Γ1 ⊢ sp : uptr〈Int, s〉
(T-Sfree)

Ψ ⊢ sfree 1 : Γ1 → Γ2

·
·
·

Ψ ⊢ jump r3 : Code(Γ2)
(T-Seq)

Ψ ⊢ sfree 1; jump r3 : Code(Γ1)

·
·
·

Ψ ⊢ r1 := 0 : Γ → Γ1

·
·
·

Ψ ⊢ sfree 1; jump r3 : Code(Γ1)
(T-Seq)

Ψ ⊢ r1 := 0; sfree 1; jump r3 : Code(Γ)
(T-Gen)

Ψ ⊢ r1 := 0; sfree 1; jump r3 : ∀s · Code(Γ)

286-a



Type Safety for TAL-1

Progress: If ⊢ M then there is some M ′ such that M → M ′.

Preservation: If ⊢ M and M → M ′ then either M ′ is StackOverflow, or ⊢ M ′.

287



The Java Security Manager

Allows or disallows various operations.

Various kinds of operations (reading or writing files, connecting to another

machine) requires asking the security manager for permission.

Security managers are objects of the SecurityManager class.

288



public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

289



public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command successful!

The local file gets deleted, if the user has permissions from the operating

system.

289-a



What if such code is present in some applet loaded by a web-browser?

290



What if such code is present in some applet loaded by a web-browser?

import java.applet.Applet; import java.awt.Graphics;

public class BadApplet extends Applet{

String text;

public void init() {

try { Runtime.getRuntime().exec(”/bin/rm −rf /path/to/filexyz”);

} catch (Exception e) { text = ”Deletion command failed: ” + e; return; }

text = ”Deletion command successful!”;

}

public void paint(Graphics g){ g.drawString(text, 15, 25); }

}

290-a



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

291



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

Loading this page in a web browser shows:

Deletion command failed: java.security .AccessControlException:

access denied (java. io .FilePermission /bin/rm execute)

291-a



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

Loading this page in a web browser shows:

Deletion command failed: java.security .AccessControlException:

access denied (java. io .FilePermission /bin/rm execute)

The web browser automatically gives restricted permissions to applets.

The sandbox associated with a class depends upon the source from where it

was loaded.

291-b



The typical sequence used for potentially dangerous operations:

• User program makes some request to the Java API.

• The Java API asks the security manager for permissions.

• If the security manager doesn’t want to allow this operation, it throws

back an exception which is thrown back to the user program.

• Otherwise the security manager does nothing and the Java API completes

the operation.

In the previous example, the user program calls the exec method, which calls

the checkExec method on the security manager to check for permission.

292



The code executed on calling exec is similar to this:

public process exec (String command) throws IOException {

...

SecurityManager sm = System.getSecurityManager();

if (sm != null) {

sm.checkExec();

// security exception can be raised here

}

// remaining code follows

...

}

293



Another example: reading files.

// open a file

FileInputStream fis = new FileInputStream (”somefile”);

// read a byte

int x = fis.read();

The code executed on calling FileInputStream is similar to

public FileInputStream (String name) throws FileNotFoundException {

SecurityManager sm = System.getSecurityManager();

if (sm != null) { sm.checkRead(name); }

try { open (name);

} catch (IOException e) {

throw new FileNotFoundException (name);

}

}

294



The System class has various useful data and functions which are global for the

whole virtual machine.

The security manager is obtained by getSecurityManager method, and null is

returned if no security manager has been set.

The security manager is set by setSecurityManager method, and an exception

is raised if the security manager has already been set.

Hence once the security manager has been set, it cannot be modified.

In particular, java applications can set the security manager before executing

remote applets, so that these applets don’t try to set their own security

manager.

295



Defining one’s own security manager: we extend the SecurityManager class and

override the functions as required.

public class NewSecurityManager extends SecurityManager {

public void checkExec (String cmd) {

// always disallow exec

throw new SecurityException (”exec not allowed”)

}

}

296



Modifying the BadClass to use this security manager.

public class NewBadClass {

public static void main(String args[]) {

SecurityManager sm = new NewSecurityManager();

System.setSecurityManager(sm);

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

297



Modifying the BadClass to use this security manager.

public class NewBadClass {

public static void main(String args[]) {

SecurityManager sm = new NewSecurityManager();

System.setSecurityManager(sm);

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command failed: java.lang.SecurityException: exec not allowed

297-a



Examples of methods of the security manager.

• checkRead (String file): called e.g. by FileInputStream (String file).

• checkWrite (String file): called by FileOutputStream (String file).

• checkDelete (String file)

298



Examples of methods of the security manager.

• checkRead (String file): called e.g. by FileInputStream (String file).

• checkWrite (String file): called by FileOutputStream (String file).

• checkDelete (String file)

Note that while creating a FileInputStream object requires a checkRead call, the

actual read() operations on the file input stream requires no permission.

• A trusted class can choose to deliver the FileInputStream object to an

untrusted class which can then read from the file.

• It is efficient to check permissions only once.

298-a



The Access Controller

• Has functions similar to the security manager.

• Provides easy enforcement of fine grained security policies.

• The security manager works most of the time by calling the access

controller.

• Implemented by the AccessController class, accessed through its static

methods.

299



Involves the following four classes.

• The CodeSource class: represents the source from which a certain class was

loaded, an an optional list of certificates which was used to sign that code.

• The Permission and Permissions classes: represent various kinds of

permissions.

• The Policy class: a policy maps code source objects to permission objects.

Only one policy can be associated with the JVM at any point of time, like

the security manager. But the policy can be modified.

• The ProtectionDomain class: a protection domain represents all the

permissions granted to a particular code source.

300



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

301



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

Permission objects for accessing files are members of the FilePermission class

(subclass of the Permission class).

• The type is FilePermission.

• The name is the name of the file.

• Possible actions are ”read”, ”write”, ”delete” and ”execute”.

301-a



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

Permission objects for accessing files are members of the FilePermission class

(subclass of the Permission class).

• The type is FilePermission.

• The name is the name of the file.

• Possible actions are ”read”, ”write”, ”delete” and ”execute”.

Permission objects are used for requesting permissions as well as for

representing granted permissions.

301-b



The security manager, on receiving the checkExec(”/bin/rm”) call, would

normally construct the following permission object

FilePermission fp = new FilePermission (”/bin/rm”, ”execute”);

and then query the access controller.

AccessController.checkPermission (fp);

302



The security manager, on receiving the checkExec(”/bin/rm”) call, would

normally construct the following permission object

FilePermission fp = new FilePermission (”/bin/rm”, ”execute”);

and then query the access controller.

AccessController.checkPermission (fp);

Other examples:

FilePermission fp1 = new FilePermission (”/bin/∗”, ”execute”);

FilePermission fp2 = new FilePermission (”/home/userx”, ”read, write”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”connect”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”accept, listen”);

302-a



Policies are specified by objects of Policy class.

It can be obtained and set using getPolicy () and setPolicy (Policy p).

Policy objects can be created by reading from a file which lists the policy rules.

Typically done at startup time:

java −Djava.security.manager −Djava.security.policy=<policyfilename> <class> <args>

appletviewer −J−Djava.security.policy=<policyfilename> file.html

303



The policy file have rules mapping code sources to sets of permissions.

grant codeBase ”file:/home/userxyz/classes” {

permission java.io.FilePermission ”/bin/rm” ”execute”;

permission java.net.SocketPermission ”localhost:1024−” ”listen, accept”;

};

grant signedBy <signer>, codeBase ”http://www.xyz.com” {

permission ...

...

};

304



A protection domain groups a code source with a set of permissions.

The class loader is supposed to associate a protection domain with a class

when it loads the class.

The protection domain associated with each class is used by the access

controller when it is called to check a permission using the checkPermission()

method.

C3

classes protection domains

permissions

C2

C1

C4

code source CS1

code source CS2

code source CS3

305


