
Stack inspection

Allowing or disallowing a permission depends on the context in which the

checkPermission method was called.

The access controller needs to examine the protection domains associated with

all the classes on the stack.

The permission is granted only if all the protection domains on the stack have

this permission.

In our old example, the BadClass.main() method for deleting a file calls the

Runtime.exec() method which calls the AccessController.checkPermission() to

check execute permission on /bin/rm.

Further, the BadClass.main() method itself may be called by some other

method m() of class C.

306

We get the following stack.

AccessController.checkPermission()

Runtime.exec()

BadClass.main()

C.m()

. . .

The execute permission should be granted only if all the classes on the stack

have that permission in their protection domain.

Hence the access controller checks that all frames from the top of the stack to

the bottom have this permission in the protection domains of the respective

classes.

307

Sometimes a trusted class may choose to give its permissions to lower frames

on the stack.

E.g. an untrusted applet may call some routine to draw something on the

screen, and the routine requires some local font file.

This is done using the doPrivileged() method.

untrustedclass { f() { ... trustedclass.draw() ...}}

trustedclass {

public void draw {

...

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

// privileged code here

... <read font file> ...

} }); }}

308

Instead of the doPrivileged() method

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

<privileged code>

}

});

earlier versions used beginPrivileged() and endPrivileged() calls.

AccessController.beginPrivileged();

<privileged code>

AccessController.endPrivileged();

309

To understand the stack inspection algorithm let us assume the following

operations.

• enablePrivilege(T)

• disablePrivilege(T)

• checkPrivilege(T)

• revertPrivilege(T)

where T is a target (permission in the Java terminology) we wish to protect.

310

Actions taken by these operations:

• enablePrivilege(T) puts an enabledPrivilege(T) flag on the current stack

frame if the current class has access to T according to the policy.

• disablePrivilege(T) puts a disabledPrivilege(T) flag on the current stack

frame (and removes enabledPrivilege(T) flag if present).

• revertPrivilege(T) removes enabledPrivilege(T) and disabledPrivilege(T) flags

from the current stack frame if present.

• checkPrivilege(T) examines the stack as follows . . .

311

checkPrivilege (T) {

for SF from top stack frame to bottom stack frame {

if (policy doesn’t allow the class in SF to access T) throw ForbiddenException;

if (SF has enabledPrivilege (T) flag) return;

if (SF has disabledPrivilege (T) flag) throw ForbiddedException;

}

return; // reached bottom of stack

}

312

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

313

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

313-a

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

313-b

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

– P ∧ Q says s means that both P and Q say s.

313-c

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

– P ∧ Q says s means that both P and Q say s.

– P⇒Q means that P speaks for Q, i.e. P has at least as much authority

as Q.

313-d

We assume a set of atomic statements and atomic principals.

principal P ::=

AtomicPrincipal

P1 ∧ P2

P1 | P2

statement s ::=

AtomicStatement

s1 ∧ s2

s1→s2

P says s1

P1⇒P2

314

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

315

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

315-a

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

315-b

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

Intuitively, from s1 ∧ s2 ∧ s3 we should be able to prove s.

315-c

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

Intuitively, from s1 ∧ s2 ∧ s3 we should be able to prove s.

For this we require certain rules (axioms) for making proofs.

315-d

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

316

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

316-a

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

The ABLP statement

(P says s) ∧ ((P says s)→s)→s

is an instance of the propositional logic statement

(X ∧ (X→Y))→Y

316-b

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

The ABLP statement

(P says s) ∧ ((P says s)→s)→s

is an instance of the propositional logic statement

(X ∧ (X→Y))→Y

Hence both ABLP statements are true.

316-c

2 If s and s→s′ then s′.

317

2 If s and s→s′ then s′.

3 (P says s ∧ P says (s→s′))→P says s′

We can draw conclusions from statements made by principals.

317-a

2 If s and s→s′ then s′.

3 (P says s ∧ P says (s→s′))→P says s′

We can draw conclusions from statements made by principals.

4 If s then P says s for every principal P .

True ABLP statements are supported by all principals.

317-b

Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

318

Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

We use the following steps.

(s1 ∧ s2)→s1 by (1)

Alice says ((s1 ∧ s2)→s1) by (4)

Alice says s1 by (3)

318-a

Axioms about principals

5 (P ∧ Q) says s ≡ (P says s) ∧ (Q says s)

6 (P | Q) says s ≡ P says (Q says s)

7 (P = Q)→(P says s ≡ Q says s)

= is equality on principals.

8 (P1 | (P2 | P3)) = ((P1 | P2) | P3)

Quoting is associative.

319

9 (P1 | (P2 ∧ P3)) = (P1 | P2) ∧ (P1 | P3)

Quoting distributes over conjunction

10 (P⇒Q) ≡ (P = P ∧ Q)

11 (P says (Q⇒P))→(Q⇒P)

A principal is free to choose a representative.

320

Example We want to conclude s from the three statements:

– (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

– Charlie | Alice says s

– (Alice says s)→s

(Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

→(Charlie⇒(Alice ∧ Bob)) by (11)

(Charlie⇒(Alice ∧ Bob)) by (2)

Charlie = (Charlie ∧ Alice ∧ Bob) by (10)

Charlie says (Alice says s) by (6)

(Charlie ∧ Alice ∧ Bob) says (Alice says s) by (7,2)

321

Alice says (Alice says s) by (5,1,2)

Alice says ((Alice says s)→s) by (4)

Alice says s by (3)

s by (2)

322

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

323

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

323-a

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)

323-b

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

324

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

324-a

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.

324-b

For each target T we treat Ok(T) as an atomic statement.

It means that access to T is permitted.

We consider the axiom

(T says Ok(T))→Ok(T) (S4)

A target is always free to grant permission to itself.

Targets are dummy principals. They never speak, but other (non-dummy)

principals representing them may speak for them.

Target credentials T is the set of such axioms for all targets T .

325

Policy for a virtual machine M is defined by a set

access credentials AM of statements of the form P⇒T where P is a principal

and T is a target.

This rule means that the local policy of virtual machine M allows P to access

T .

326

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

327

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

327-a

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

327-b

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

327-c

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

328

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

328-a

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

Checking privileges

When F calls checkPrivilege(T) then we check that Ok(T) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF }.

328-b

