
Example Assume at the beginning that BF1
= {}.

Now F1 calls enablePrivilege(T1). We have BF1
= {Ok(T1)}.

F1 calls checkPrivilege(T1).

Hence we take the statement F1 says Ok(T1).

Let S1 be the signer of the code which produced the frame F1.

Then we conclude F1⇒S1 from the frame credentials Φ.

If the access credentials set AM has a statement S1⇒T1

then using the statement (T1 says Ok(T1))→Ok(T1) from T

we conclude Ok(T1).
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Now F1 makes a function call and the new frame F2 calls enablePrivilege(T2).

We have BF2
= {F1 says Ok(T1),Ok(T2)}

F2 makes function call and the new frame F3 calls disablePrivilege(T1).

We have BF3
= {F2 says Ok(T2)}.

F3 makes function call and the new frame F4 calls enablePrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2),Ok(T2)}.

F4 calls revertPrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2)}.
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Now F4 calls checkPrivilegeT2.

We take the statement (F4 | F3 | F2) says Ok(T2) i.e.

F4 says (F3 says (F2 says Ok(T2))).

Suppose from the frame credentials Φ imply that

F4⇒S4 F3⇒S3 F2⇒S2

Suppose that AM further has statements

S4⇒T2 S3⇒T2 S2⇒T2

Then we conclude:

T2 says (F3 says (F2 says Ok(T2)))

T2 says (T2 says (F2 says Ok(T2)))
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T2 says (T2 says (T2 says Ok(T2)))

Further (T2 says Ok(T2))→Ok(T2) is in T .

Hence T2 says (T2 says ((T2 says Ok(T2))→Ok(T2))).

Hence T2 says (T2 says Ok(T2)).

Similarly T2 says Ok(T2).

Hence Ok(T2).
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Security protocols

For secure communication over an insecure network.

• Adversary can spy on messages,

• delete messages,

• modify messages,

• impersonate as Alice to Bob,

• deny having sent or received a message

• . . .
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Encrypting and decrypting messages

. . . the naive way:

Instead of Alice −→ Bob:

This is Alice. My credit card number is 1234567890123456

We have Alice −→ Bob:

6543210987654321 si rebmun drac tiderc yM .ecilA si sihT

Alice and Bob agree on the method of encryption and decryption.

ciphertext
encryption decryption

plaintext original plaintext
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Cryptography with keys

Today we instead have the following picture:

ciphertext
encryption decryption

K1
K2

plaintext original plaintext

The encryption and decryption algorithms are assumed to be publicly known.

The security lies in the (secret) keys.

8109675
add mod 10 add mod 10

47652314765231

4 6
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Cryptography of the pre-computer age Substitution ciphers: each character

is mapped to the another character. The famous Caesar cipher: A → D, B →

E, . . . , Z → C.

transposition cipher: shuffling around of characters.

Plaintext: this is alice my credit card number is 1234567890123456

thisisalic

emycreditc

ardnumberi

s123456789

0123456

Ciphertext: teas0 hmr11 iyd22 scn33 iru44 sem55 adb66 lie7i tr8cc

i9
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Private key cryptography

encryption decryption
{m}k

k k

m m

• The same key k is used for encryption and decryption

• Given message m and key k, we can compute the encrypted message {m}k

• Given the encrypted message {m}k and the key k, we can compute the

original message m
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Private key cryptography

Suppose Kab is a private key shared between A and B.

A can send a message m to B using private key cryptography:

A −→ B : {m}Kab

Only B can get back the message m.

A and B need to agree beforehand on a key Kab which should not be disclosed

to any one else
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Public key cryptography

encryption decryption
{m}k

k

m m

k
−1

• A chooses pair (Ka,K
−1
a ) of keys such that

– messages encrypted with Ka can be decrypted with K−1
a

– K−1
a cannot be calculated from Ka

• A makes Ka public: this is the public key of A

• A keeps K−1
a secret: this is the private key of A
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Public key cryptography

Then any B can send a message to A which only A can read:

B −→ A : {m}Ka

Sometimes we have the additional property: messages encrypted with K−1
a can

be decrypted with Ka

Then A can send a message m to B

A −→ B : {m}
K

−1
a

and B is sure that the message m was encrypted by A. Hence we have

authentication
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One way hash functions

Properties of a one way hash function H:

– Given M , it is easy to compute H(M) (called message digest).

– Given H(M) is is difficult to find M ′ such that H(M) = H(M ′).

A sends to B the message M together with the encrypted hash value

{H(M)}Kab
.

Efficient means of demonstrating authenticity, since H(M) is of a fixed size.
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Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms are

perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message
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Cryptography is not enough!

Intruder is more clever. He can attack even if the cryptographic algorithms are

perfect.

Alice tells Bank to transfer £5000 to Charlie’s (intruder) account:

A −→ B : {A,B, transfer 5000 euros . . .}Kab

• B believes that message comes from A

• Charlie has no way to decrypt the message

• But: Charlie can send the same message again to the bank

Intruder can replay known messages (freshness attack)
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Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.
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Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?
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Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.
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Solution: use session key

Generate fresh random value (nonce) for each new session and use it as a key

for that session.

How to agree on a fresh key for each session?

A sends to B the new key Kab at the beginning of the session:

A −→ B : Kab

And then uses it during that session.

Doesn’t work. What about

A −→ B : {Kab}Klong

Using a long term key to agree on a session key.
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A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb
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A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.
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A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb
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A more complex solution A and B both choose a nonce each.

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

The second message is to assure A that B is active and Nb is fresh.

The third message is to assure B that A is active and Na is fresh.

Expected security property: Na and Nb are known only to A and B.

Expected authentication property: A and B are assured that they are talking

to each other.

A −→ B : {A,B,Na, Nb transfer 5000 euros . . .}Kb

How secure is this ? How to guarantee security ?
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Cryptography and cryptographic protocols

• Cryptography deals with algorithms for encryption, decryption, random

number generation, etc. Cryptographic protocols use cryptography for

exchanging messages.

• Attacks against cryptographic primitives involves breaking the algorithm

for encryption, etc. Attacks against cryptographic protocols may be of

completely logical nature.

• Cryptographic protocols may be insecure even if the underlying

cryptographic primitives are completely secure.

• Hence we often separate the study of cryptographic protocols from that of

cryptographic primitives.
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Difficulty in ensuring correctness of cryptographic protocols

• Infinitely many sessions

• Infinitely many participants

• Infinitely many nonces

• Sessions are interleaved

• Adversary can replace messages by any arbitrary message: infinitely

branching system
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Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb
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Back to our example

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb}Ka

3. A −→ B : {Nb}Kb

This is the well-known Needham-Schroeder public-key protocol.

Published in 1978. Attack found after 17 years in 1995 by Lowe.
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Man in the middle attack

A -

{A,Na}Kc

C (A) -

{A,Na}Kb

B

A �

{Na, Nb}Ka

C (A)�

{Na, Nb}Ka

B

A -

{Nb}Kc

C (A) -

{Nb}Kb

B
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Man in the middle attack

A -

{A,Na}Kc

C (A) -

{A,Na}Kb

B

A �

{Na, Nb}Ka

C (A)�

{Na, Nb}Ka

B

A -

{Nb}Kc

C (A) -

{Nb}Kb

B

Even very simple protocols may have subtle flaws
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Consequences

Suppose B is the server of a bank.

C, who can now pretend to be A:

C −→ B : {Na, Nb, transfer £5000 from account of A to account of C}Kb
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A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb
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A fix: the Needham-Schroeder-Lowe protocol [Lowe,1985]

B includes his identity in the message he sends:

1. A −→ B : {A,Na}Kb

2. B −→ A : {B,Na, Nb}Ka

3. A −→ B : {Nb}Kb

Is it secure?
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A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb
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A variant of the Needham-Schroeder-Lowe protocol

Suppose now we change the place of B in the second message:

1. A −→ B : {A,Na}Kb

2. B −→ A : {Na, Nb, B}Ka

3. A −→ B : {Nb}Kb

Does this affect security?
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Type flaw

An attack on the variant of the Needham-Schroeder-Lowe protocol [Millen]:

C -

{A,C}Kb

B

B -

{C,Nb, B
︸ ︷︷ ︸

Nc

}Ka

A

C �

{Nb, B,Na, A}Kc

A
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The Spi calculus

Abadi, Gordon, 1997

• Extends pi calculus which provides a language for describing processes.

• We treat protocols as processes, where messages sent and received by

processes may involve encryption.

• Security is defined as equivalence between processes in the eyes of an

arbitrary environment.

• Environment is also a spi calculus process.

• We study information flow to check whether secrets are leaked.
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• A process may involve sequences of actions for sending and receiving

messages on channels.

• A Processes may contain smaller processes running in parallel.
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• A process may involve sequences of actions for sending and receiving

messages on channels.

• A Processes may contain smaller processes running in parallel.

Use halt to denote a finished process: it does nothing.

We write sendc〈M〉;P to denote a process that sends the message M on

channel c after which it executes the process P .

recvc(x);Q denotes a process that is listening on the channel c.

On receiving some message M on this channel then it executes process Q[M/x].
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The process

P1 , recvc(x); sendd〈x〉; halt

on receiving message M on channel c, sends M on channel d and then halts.

The process

P2 , sendc〈M〉; halt

sends M on channel c and halts.
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The process

P1 , recvc(x); sendd〈x〉; halt

on receiving message M on channel c, sends M on channel d and then halts.

The process

P2 , sendc〈M〉; halt

sends M on channel c and halts.

Putting them in parallel gives the process

P3 , P1 | P2

The message sent by P2 is received by P1. Hence P3 as a whole can make a

”silent” transition to the process sendd〈M〉; halt.
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Further the process

P5 , P3 | P4

where

P4 , recvd(x); halt

can halt after making only silent transitions.

Intuitively P5 represents the protocol

P2 −→ P1 : M (on channel c)

P1 −→ P4 : M (on channel d)
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We can restrict access to channels.

The process new c;P creates a fresh channel c and can be used inside process

P . No outside process can access c.

(c is like a bound variable whose scope is inside P )

We consider processes to be the same after renaming of bound names.

Consider the process

(new c; sendc〈M〉; halt) | (recvc(x); halt)

No communication happens between the two smaller processes.

The above process is the same as the following one.

(new d; sendd〈M〉; halt) | (recvc(x); halt)
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Hence new allows us to create channels for secure communication.

Consider the process

new c; (sendc〈M〉; halt | recvc(x);P | recvc(x);Q)

Communication can take place between first and second subprocess to create

the process new c; (P [M/x] | recvc(x);Q)

Or communication can take place between first and third subprocess to create

the process new c; (recvc(x);P | Q[M/x])
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Hence new allows us to create channels for secure communication.

Consider the process

new c; (sendc〈M〉; halt | recvc(x);P | recvc(x);Q)

Communication can take place between first and second subprocess to create

the process new c; (P [M/x] | recvc(x);Q)

Or communication can take place between first and third subprocess to create

the process new c; (recvc(x);P | Q[M/x])

However the process

(new c; (sendc〈M〉; halt | recvc(x);P )) | recvc(x);Q

can only lead to the process (new c;P [M/x]) | recvc(x);Q

358-a



Channels can also be sent as messages. Consider the following protocol where

cAB is a freshly created channel whereas cAS and cSB are long term channels.

A −→ S : cAB on cAS

S −→ B : cAB on cSB

A −→ B : M on cAB

can be represented as follows where F (y) is a process involving variable y.

A , new cAB; sendcAS
〈cAB〉; sendcAB

〈M〉; halt

S , recvcAS
(x); sendcSB

〈x〉; halt

B , recvcSB
(x); recvx(y);F (y)

P , new cAS ; new cSB; (A | S | B)

P makes silent transitions to new cAS ; new cSB;F (M).
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Processes can perform computations like

• encryption, decryption (we will deal with only symmetric key encryption)

• pairing, unpairing

• increments, decrements

• checking equality of messages
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Processes can perform computations like

• encryption, decryption (we will deal with only symmetric key encryption)

• pairing, unpairing

• increments, decrements

• checking equality of messages

The process

recvc(x1, x2, x3); case x1 of

{y1}K : check (y1 == x2); sendc〈y1, succ (x3)〉; halt

receives an input of the form {M}K ,M,N on channel c and sends out

y1, succ (x3) on channel c.
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The syntax

M ::= term

n name

(M,N) pair

0 zero

succ (M) successor

{M1, . . . ,Mk}N encryption

x variable
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P ::= process

sendM 〈N1, . . . ,Nk〉;P output

recvM (x1, . . . , xk);P input

halt halt

P | Q parallel composition

repeat P replication

new n;P restriction

check (M == N);P comparison

let (x, y) = M ;P unpairing

case M of 0 : P , succ (x) : Q integer case analysis

case M of {x1, . . . , xk}N : P decryption
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Intuitively, repeat P represents infinitely many copies of P running in parallel.

In other words we can consider repeat P to represent P | P | P | . . .

Consider

P , recvc(x); halt

P1 , sendc(M1); halt

P2 , sendc(M2); halt

The process

P1 | P2 | repeat P

can make silent transitions (internal communication) to create the process

repeat P
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