A one message protocol using cryptography, where $K_{A B}$ is a symmetric key shared between A and B for private communication.

$$
A \longrightarrow B:\{M\}_{K_{A B}} \text { on } c_{A B}
$$

This can be represented as

$$
\begin{aligned}
& A \triangleq \operatorname{send}_{c_{A B}}\left\langle\{M\}_{K_{A B}}\right\rangle ; \text { halt } \\
& B \triangleq \operatorname{recv}_{c_{A B}}(x) ; \text { case } x \text { of }\{y\}_{K_{A B}}: F(y) \\
& P \triangleq \text { new } K_{A B} ;(A \mid B)
\end{aligned}
$$

The key $K_{A B}$ is restricted, only A and B can use it.
The channel $c_{A B}$ is public. Other principals may send messages on it or listen on it.
P can make silent transitions to new $K_{A B} ; F(M)$.

Formal semantics

We now need to define how processes execute.

For example we would like

$$
\operatorname{send}_{c}\langle M\rangle ; P\left|\operatorname{recv}_{c}(x) ; Q \xrightarrow{\tau} P\right| Q[M / x]
$$

where τ denotes a silent action (internal communication).

Let $f n(M)$ and $f n(P)$ be the set of free names in term M and process P respectively.

Let $f v(M)$ and $f v(P)$ be the set of free variables in term M and process P respectively.

Closed processes are processes without any free variables.

Let $P \triangleq$ new c; new $K ; \operatorname{recv}_{d}(x)$; case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle$; halt.
We have
$f n\left(\operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;\right.$ halt $)=\{c, d, K\}$
$f v\left(\operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;\right.$ halt $)=\{y, z\}$
$f n\left(\right.$ case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;$ halt $)=\left\{c, d, K, K^{\prime}\right\}$
$f v\left(\right.$ case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;$ halt $)=\{x, z\}$
$f n(P)=\left\{d, K^{\prime}\right\}$
$f v(P)=\{z\}$
$f n\left(\{y\}_{K}\right)=\{K\}$
$f v\left(\{y\}_{K}\right)=\{y\}$

First we define reduction relation $>$ on closed processes:

repeat P	$>P \mid$ repeat P
check $(M==M) ; P$	$>P$
let $(x, y)=(M, N) ; P$	$>P[M / x, N / y]$
case 0 of $0: P, \operatorname{succ}(x): Q$	$>P$
case succ (M) of $0: P, \operatorname{succ}(x): Q$	$>Q[M / x]$
case $\{M\}_{N}$ of $\{x\}_{N}: P$	$>P[M / x]$

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further. check ($0==\operatorname{succ}(0) ; P$ (comparison fails).
let $(x, y)=0 ; P$ (unpairing fails)
case (M, N) of $0: P, \operatorname{succ}(x): Q($ not an integer $)$
case (M, N) of $\{x, y\}_{K}: P$ (not an encrypted message)
case $\{M, N\}_{K^{\prime}}$ of $\{x, y\}_{K}: P$ where $K \neq K^{\prime}$

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further. check ($0==\operatorname{succ}(0) ; P$ (comparison fails).
let $(x, y)=0 ; P$ (unpairing fails)
case (M, N) of $0: P, \operatorname{succ}(x): Q($ not an integer $)$
case (M, N) of $\{x, y\}_{K}: P$ (not an encrypted message)
case $\{M, N\}_{K^{\prime}}$ of $\{x, y\}_{K}: P$ where $K \neq K^{\prime}$
This is also based on the perfect cryptography assumption: distinct terms represent distinct messages.

A barb β is either

- a name n (representing input on channel n), or
- a co-name \bar{n} (representing output on channel n)

An action is either

- a barb (representing input or output to the outside world), or
- τ (representing a silent action i.e. internal communication)

We write $P \xrightarrow{\alpha} Q$ to mean that P makes action α after which Q is the remaining process that is left to be executed.

Commitment relation Consider again $\operatorname{send}_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$

Commitment relation Consider again $\operatorname{send}_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$

The first subprocess makes an output action on channel c.
We will represent it as $\operatorname{send}_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

Commitment relation Consider again send ${ }_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$
The first subprocess makes an output action on channel c.
We will represent it as send ${ }_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.
We will represent it as $\operatorname{recv}_{c}(x) ; Q \xrightarrow{c}(x) Q$.
$(x) Q$ is called an abstraction:it represents a commitment to input some x after which Q will be executed.

Commitment relation Consider again send ${ }_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$
The first subprocess makes an output action on channel c.
We will represent it as send ${ }_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.
We will represent it as $\operatorname{recv}_{c}(x) ; Q \xrightarrow{c}(x) Q$.
$(x) Q$ is called an abstraction:it represents a commitment to input some x after which Q will be executed.

Abstractions and concretions can be combined:
$\langle M\rangle P @(x) Q=P \mid Q[M / x]$

Formally an abstraction F is of the form

$$
\left(x_{1}, \ldots, x_{k}\right) P
$$

where $k \geq 0$ and P is a process.
A concretion C is of the form

$$
\left(\text { new } n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P
$$

where n_{1}, \ldots, n_{l} are names, $l, k \geq 0$ and P is a process.

Formally an abstraction F is of the form

$$
\left(x_{1}, \ldots, x_{k}\right) P
$$

where $k \geq 0$ and P is a process.

A concretion C is of the form

$$
\left(\text { new } n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P
$$

where n_{1}, \ldots, n_{l} are names, $l, k \geq 0$ and P is a process.
For $F \triangleq\left(x_{1}, \ldots, x_{k}\right) P$ and $C \triangleq\left(\right.$ new $\left.n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle Q$ with $\left\{n_{1}, \ldots, n_{l}\right\} \cap f n(P)=\emptyset$ we define interaction of F and C as

$$
\begin{aligned}
& F @ C \triangleq \text { new } n_{1} ; \ldots \text { new } n_{l} ;\left(P\left[M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right] \mid Q\right) \\
& C @ F \triangleq \text { new } n_{1} ; \ldots \text { new } n_{l} ;\left(Q \mid P\left[M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right]\right)
\end{aligned}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.
$\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}($ new $)\left\langle M_{1}, \ldots, M_{k}\right\rangle P$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P
\end{gathered}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P \\
\frac{P \xrightarrow{m} F \quad Q \xrightarrow{\bar{m}} C}{P \mid Q \xrightarrow{\tau} F @ C}
\end{gathered}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P \\
\xrightarrow{P \mid Q \xrightarrow{m} F Q \xrightarrow{\bar{m}} C} C \\
\xrightarrow{P \mid Q \xrightarrow{\bar{m}} C \text { @ } F}+
\end{gathered}
$$

Example
Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x)$; case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle\right.$; halt)
From our rules we have

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x)$; case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle\right.$; halt)
From our rules we have
$P \quad \xrightarrow{\bar{c}}\langle$ succ (0) \rangle halt

$$
\left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right)
$$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, $\operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have
$P \quad \xrightarrow{\bar{c}}\langle$ succ $(0)\rangle$ halt $\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right.$ denotes (new) $\left.\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right)$
$Q \quad \xrightarrow{c}(x)$ case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle\right.$; halt $)$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have

$$
\begin{array}{cl}
P & \xrightarrow{\bar{c}}\langle\text { succ }(0)\rangle \text { halt } \\
& \left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right) \\
Q & \xrightarrow{c}(x) \text { case } x \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right) \\
P \mid Q & \xrightarrow{\tau} \text { halt } \mid \text { case succ }(0) \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right)
\end{array}
$$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, $\operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have

$$
\begin{aligned}
P & \xrightarrow{\bar{c}}\langle\text { succ }(0)\rangle \text { halt } \\
& \left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right) \\
Q & \xrightarrow{c}(x) \text { case } x \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right) \\
P \mid Q & \xrightarrow{\tau} \text { halt } \mid \text { case succ }(0) \text { of } 0: \text { halt, succ }(y):(\text { send } d\langle y\rangle ; \text { halt }) \\
& \xrightarrow{\bar{d}}\langle 0\rangle(\text { halt } \mid \text { halt } \quad \text { using the following rules... }
\end{aligned}
$$

$$
\begin{gathered}
\frac{P>Q \quad Q \xrightarrow{\alpha} A}{P \xrightarrow{\alpha} A} \\
\frac{P \xrightarrow{\alpha} A}{P|Q \xrightarrow{\alpha} A| Q} \quad \frac{Q \xrightarrow{\alpha} A}{P|Q \xrightarrow{\alpha} P| A}
\end{gathered}
$$

where

$$
P_{1} \mid\left(x_{1}, \ldots, x_{k}\right) P_{2} \triangleq\left(x_{1}, \ldots, x_{k}\right)\left(P_{1} \mid P_{2}\right)
$$

$$
P_{1} \mid\left(\text { new } n_{1}, \ldots, n_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P_{2} \triangleq\left(\text { new } n_{1}, \ldots, n_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle\left(P_{1} \mid P_{2}\right)
$$

provided that $x_{1}, \ldots, x_{k} \notin f v\left(P_{1}\right)$ and $n_{1}, \ldots, n_{k} \notin f n\left(P_{1}\right)$

For the previous example we have: case succ (0) of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)>\operatorname{send}_{d}\langle 0\rangle$; halt
and

$$
\operatorname{send}_{d}\langle 0\rangle ; \text { halt } \xrightarrow{\bar{d}}\langle 0\rangle \text { halt }
$$

hence

$$
\text { case succ }(0) \text { of } 0: \text { halt, } \operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right) \xrightarrow{\bar{a}}\langle 0\rangle \text { halt }
$$

hence
halt | case succ (0) of $0:$ halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $) \xrightarrow{\bar{d}}$ halt $\mid\langle 0\rangle$ halt

$$
=\langle 0\rangle \text { (halt } \mid \text { halt })
$$

Consider $P \triangleq\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
We would like $P \xrightarrow{\tau}\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$
but not $P \xrightarrow{\tau} P_{1}[0 / x] \mid$ new $n ;\left(P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$

Consider $\left.P \triangleq \operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
We would like $P \xrightarrow{\tau}\left(\operatorname{rec}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$
but not $P \xrightarrow{\tau} P_{1}[0 / x] \mid$ new $n ;\left(P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
Hence we have the rule

$$
\xrightarrow{P \xrightarrow{\alpha} A \quad \alpha \notin\{n, \bar{n}\}}
$$

where

$$
(\text { new } m)\left(x_{1}, \ldots, x_{k}\right) P \triangleq\left(x_{1}, \ldots, x_{k}\right) \text { new } m ; P
$$

$\left(\right.$ new m)(new $\left.m_{1}, \ldots, m_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P \triangleq\left(\right.$ new $\left.m, m_{1}, \ldots, m_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P$
provided that $m \notin\left\{m_{1}, \ldots, m_{k}\right\}$

We have send ${ }_{c}\langle 0\rangle ; P_{2} \xrightarrow{\bar{c}}\langle 0\rangle P_{2}$
and $\operatorname{rec}_{c}(x) ; P_{3} \xrightarrow{c}(x) P_{3}$
hence $\operatorname{send}_{c}\langle 0\rangle ; P_{2}\left|\operatorname{recv}_{c}(x) ; P_{3} \xrightarrow{\tau}\langle 0\rangle P_{2} @(x) P_{3}=P_{2}\right| P_{3}[0 / x]$

Since $\tau \notin\{\bar{c}, c\}$
hence new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right) \xrightarrow{\tau}$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$

Hence $\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$

$$
\xrightarrow{\tau}\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid \text { new } c ;\left(P_{2} \mid P_{3}[0 / x]\right)
$$

Consider $P \triangleq\left(\right.$ new $K ; \operatorname{send}_{c}\langle K\rangle ;$ halt $) \mid\left(\operatorname{recv}_{c}(x) ; \operatorname{send}_{d}\langle x\rangle ;\right.$ halt $)$

We have send ${ }_{c}\langle K\rangle$; halt $\xrightarrow{\bar{c}}$ (new $)\langle K\rangle$ halt
hence new $K ; \operatorname{send}_{c}\langle K\rangle ;$ halt $\xrightarrow{\bar{c}}$ new $K ;($ new $)\langle K\rangle$ halt $=($ new $K)\langle K\rangle$ halt

Also recv ${ }_{c}(x) ; \operatorname{send}_{d}\langle x\rangle ;$ halt $\xrightarrow{c}(x)$ send $_{d}\langle x\rangle ;$ halt

Hence
$P \xrightarrow{\tau}($ new $K)\langle K\rangle$ halt $@(x) \operatorname{send}_{d}\langle x\rangle ;$ halt $=($ new $K)\left(\right.$ halt $\mid \operatorname{send}_{d}\langle K\rangle ;$ halt $)$

Equivalence on processes

A test is of the form (Q, β) where Q is a closed process and β is a barb.

A process P passes the test (Q, β) iff
$(P \mid Q) \xrightarrow{\tau} Q_{1} \ldots \xrightarrow{\tau} Q_{n} \xrightarrow{\beta} A$
for some $n \geq 0$, some processes Q_{1}, \ldots, Q_{n} and some agent A.
Q is the "environment" and we test whether the process together with the environment inputs or outputs on a particular channel.

Testing preorder $P_{1} \sqsubseteq P_{2}$ iff for every test (Q, β), if P_{1} passes (Q, β) then P_{2} passes (Q, β).

Testing equivalence $P_{1} \simeq P_{2}$ iff $P_{1} \sqsubseteq P_{2}$ and $P_{2} \sqsubseteq P_{1}$.

Secrecy

Consider process P with only free variable x.
We will consider x as secret if for all terms M, M^{\prime} we have $P[M / x] \simeq P\left[M^{\prime} / x\right]$.
I.e. an observer cannot detect any changes in the value of x.

Example Consider $P \triangleq \operatorname{send}_{c}\langle x\rangle$; halt.
x is being sent out on a public channel. Consider test (Q, \bar{d}) where environment $Q \triangleq \operatorname{recv}_{c}(x)$; check ($x==0$); send ${ }_{d}\langle 0\rangle$; halt.
We have $P[0 / x] \mid Q \xrightarrow{\tau}$ halt $\mid \operatorname{send}_{d}\langle 0\rangle$; halt $\xrightarrow{\bar{d}}\langle 0\rangle$ (halt | halt).
Hence $P[0 / x]$ passes the test. However $P[\operatorname{succ}(0) / x]$ fails the test.
Hence P does not preserve secrecy of x.

Information flow analysis for the Spi-calculus

We classify data into three classes
secret data which should not be leaked
public data which can be communicated to anyone
any arbitrary data

Subsumption relation on classes:

$$
\text { secret } \preceq \text { any }
$$

public \preceq any
$T \quad \preceq T \quad$ for $T \in\{$ secret, public, any $\}$

An environment E provides information about the classes to which names and variables belong.

We define typing rules for the following kinds of judgments

	$\vdash E$	
environment E is well formed		
E	$\vdash M: T$	term M is of class T in environment E
E	$\vdash P$	
process P is well typed in environment E		

E.g. secret data should not be sent on public channels.

Data of level any should be protected as if it is of level secret, but can be exploited only as if it had level public.

Our goal is to define typing rules to filter out processes that leak secrets.

Informally we would like to show that if environment E has only any variables and public names and $E \vdash P$ then P does not leak any variables $x \in \operatorname{dom}(E)$.

Our previous example:
$P \triangleq \operatorname{send}_{c}\langle x\rangle$; halt
Consider $E=\left\{x:\right.$ any, $c:$ public $:: L_{1}, d:$ public $\left.:: L_{2}\right\}$
(L_{1} and L_{2} will be explained later.)
x is of level any but is sent out on c of level public, which will be forbidden by our typing rules.

Consider the protocol
$A \longrightarrow S: A, B$
$S \longrightarrow A:\left\{A, B, N a,\{N b\}_{K_{s b}}\right\}_{K_{s a}}$
$A \longrightarrow B:\{N b\}_{K_{s b}}$
A principal X may play the role of A in one session and of B in another session.
We need a clear way of distinguishing the messages received and their components.

This is important only for messages sent on secret channels and for messages encrypted with secret keys.

We adopt the following standard format:
Messages sent on secret channels should have three components of levels secret, any and public respectively.

Consider protocol
$B \longrightarrow A: N b$
$A \longrightarrow B:\{M, N b\}_{K_{a b}}$

By replaying nonces, an attacker can find out whether the same M is sent more than once, or different ones. Hence he gets
some partial information about the contents of the messages.

To prevent this we include an extra fresh nonce (confounder) in each message encrypted with secret keys.
$A \longrightarrow B:\{M, N b, N a\}_{K_{a b}}$

We adopt the following standard format for messages encrypted with secret keys: $\left\{M_{1}, M_{2}, M_{3}, n\right\}_{K}$ where M_{1} has level secret, M_{2} has level any, M_{3} has level public, and n is the confounder.
n can be used as confounder only in this term and nowhere else.

This information is remembered by the environment E.
I.e. if $n: T::\left\{M_{1}, M_{2}, M_{3}, n\right\}_{K} \in E$ then
we know that n is used as a confounder only in that message.

The typing rules
The empty environment is denoted \emptyset.
Well formed environments:

$$
\begin{gathered}
\vdash \emptyset \\
\frac{\vdash E \quad x \notin \operatorname{dom}(E)}{\vdash E, x: T} \\
\vdash E \\
E \vdash M_{1}: T_{1} \ldots E \vdash M_{k}: T_{k} \quad E \vdash N: R \\
\hline \vdash E, n: T::\left\{M_{1}, \ldots, M_{k}, n\right\}_{N}
\end{gathered}
$$

Environment lookups and subsumption:

Encryption

$$
\begin{array}{ccccc}
E \vdash M_{1}: T & \ldots & E \vdash M_{k}: T & E \vdash N: \text { public } & T=\text { public if } k=0 \\
\hline E \vdash\left\{M_{1}, \ldots, M_{k}\right\}_{N}: T
\end{array}
$$

$$
\begin{array}{cc}
E \vdash M_{1}: \text { secret } & E \vdash M_{2}: \text { any } \quad E \vdash M_{3}: \text { public } \\
E \vdash N: \text { secret } & n: T::\left\{M_{1}, M_{2}, M_{3}, n\right\}_{N} \in E \\
\hline E \vdash\left\{M_{1}, M_{2}, M_{3}, n\right\}_{N}: \text { public }
\end{array}
$$

$$
\begin{gathered}
\frac{E \vdash M: \text { public } E \vdash M_{1}: \text { public } \ldots \quad E \vdash M_{k}: \text { public } \quad E \vdash P}{E \vdash \operatorname{send}_{M}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P} \\
\frac{E \vdash M: \text { secret } \quad E \vdash M_{1}: \operatorname{secret} \quad E \vdash M_{2}: \text { any } \quad E \vdash M_{3}: \text { public } \quad E \vdash P}{E \vdash \operatorname{send}_{M}\left\langle M_{1}, M_{2}, M_{3}\right\rangle ; P}
\end{gathered}
$$

Only public data may be sent on public channels.

On secret channels, data is always sent in the standard format we have agreed upon.

We consider pairing as left-associative.
For example $\left(M_{1}, M_{2}, M_{3}, M_{4}\right)$ is same as $\left(\left(M_{1}, M_{2}\right), M_{3}, M_{4}\right)$

Similar rules for inputs.

$\frac{E \vdash M: \text { public } \quad E, x_{1}: \text { public, } \ldots, x_{k}: \text { public } \vdash P}{E \vdash \operatorname{recv}_{M}\left(x_{1}, \ldots, x_{k}\right) ; P}$
$\frac{E \vdash M: \text { secret } \quad E, x_{1}: \text { secret, } x_{2}: \text { any, } x_{3}: \text { public } \vdash P}{E \vdash \operatorname{recv}_{M}\left(x_{1}, x_{2}, x_{3}\right) ; P}$

The appropriate class information for the input variables is added to the environment, and the new environment is used for typing the remaining process.

$\frac{\vdash E}{E \vdash \text { halt }}$
$\frac{E \vdash P \quad E \vdash Q}{E \vdash P \mid Q}$
$\frac{E \vdash P}{E \vdash \text { repeat } P}$
$\frac{E, n: T:: L \vdash P}{E \vdash \text { new } n ; P}$

The newly created name can be chosen to be kept secret or can be revealed, and can be chosen to used as a confounder in some message.

$$
\frac{E \vdash M: T}{} E \vdash N: R \quad E \vdash P \quad T, R \in\{\text { public, secret }\}
$$

Equality checks are not allowed on data of class any to prevent implicit information flow.

Example Consider $P \triangleq \operatorname{recv}_{c}(y)$; check $(x==y)$; $\operatorname{send}_{c}\langle 0\rangle$; halt where x is the data whose secrecy we are interested in.

Secrecy of x is not maintained. $P[M / x]$ and $P\left[M^{\prime} / x\right]$ are not equivalent for $M \neq M^{\prime}$.

Consider test (Q, \bar{d}) where $Q \triangleq \operatorname{send}_{c}\langle M\rangle ; \operatorname{recv}_{c}(z) ; \operatorname{send}_{d}\langle 0\rangle ;$ halt.
$P[M / x] \mid Q$ passes the test:
$P[M / x] \mid Q \xrightarrow{\tau}$ check $(M=M) ; \operatorname{send}_{c}\langle 0\rangle ;$ halt $\mid \operatorname{recv}_{c}(z) ; \operatorname{send}_{d}\langle 0\rangle ;$ halt $\xrightarrow{\tau}$ halt | send $_{d}\langle 0\rangle$; halt $\xrightarrow{\bar{d}}\langle 0\rangle$ (halt | halt)
$P\left[M^{\prime} / x\right] \mid Q$ does not pass the test.

Similarly, case analysis on data of class any are disallowed.

$$
\begin{gathered}
E \vdash M: T \quad E, x: T, y: T \vdash P \quad T \in\{\text { public, secret }\} \\
E \vdash \operatorname{let}(x, y)=M ; P \\
\frac{E \vdash M: T \quad E \vdash P \quad E, x: T \vdash Q \quad T \in\{\text { secret, public }\}}{E \vdash \text { case } M \text { of } 0: P, \text { succ }(x): Q}
\end{gathered}
$$

Decryption

$$
\begin{array}{cc}
E \vdash L: T & E \vdash N: \text { public } \quad E, x_{1}: T, \ldots, x_{k}: T \vdash P \quad T \in\{\text { secret, public }\} \\
E \vdash \text { case } L \text { of }\left\{x_{1}, \ldots, x_{k}\right\}_{N}: P \\
& E \vdash L: T \quad E \vdash N: \text { secret } \quad T \in\{\text { secret, public }\} \\
& E, x_{1}: \text { secret, } x_{2}: \text { any }, x_{3}: \text { public, } x_{4}: \text { any } \vdash P \\
E \vdash \text { case } L \text { of }\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}_{N}: P
\end{array}
$$

The confounder x_{4} in the second rule is assumed to be of type any because we have no more information about it.

Typing implies noleak of information

Suppose

- $\vdash E$
- all variables in $\operatorname{dom}(E)$ are of level any and all names in $\operatorname{dom}(E)$ are of level public.
- $E \vdash P$
- P has free variables x_{1}, \ldots, x_{k}
- $f n\left(M_{i}\right), f n\left(M_{i}^{\prime}\right) \subseteq \operatorname{dom}(E)$ for $1 \leq i \leq k$.
then $P\left[M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right] \simeq P\left[M_{1}^{\prime} / x_{1}, \ldots, M_{k}^{\prime} / x_{k}\right]$
Well typed processes maintain secrecy of the free variables $\left(x_{1}, \ldots, x_{k}\right)$, i.e. they are not leaked.

Our previous example $P \triangleq \operatorname{recv}_{c}(y)$; check $(x==y) ; \operatorname{send}_{c}\langle 0\rangle$; halt

We take $E \triangleq\left\{x\right.$: any, $c:$ public :: $\left.\{n\}_{0}\right\} . c$ is not meant to be used as a confounder, hence we have the dummy term $\{n\}_{0}$.

We have $\vdash E$.

In order to show $E \vdash P$ we need to find some T such that
E, y : public \vdash check $(x==y) ; \operatorname{send}_{c}\langle 0\rangle$; halt.
But this is impossible because equality checks should not involve data of class any.

Hence the process doesn't type-check, as required.

Consider $P \triangleq$ new K; new m; new n; send $_{c}\left\langle\{m, x, 0, n\}_{K}\right\rangle$; halt.

We take $E \triangleq\left\{x\right.$: any, $c:$ public $\left.::\{n\}_{0}\right\}$. We have $\vdash E$.

To show $E \vdash P$ we choose
$E^{\prime} \triangleq E, K$: secret :: $\{K\}_{0}, m$: secret :: $\{m\}_{0}, n:$ secret :: $\{m, x, 0, n\}_{K}$ and show that $E^{\prime} \vdash \operatorname{send}_{c}\left\langle\{m, x, 0, n\}_{K}\right\rangle$; halt.

This is ok because $E^{\prime} \vdash m$: secret, $E^{\prime} \vdash x$: any, $E^{\prime} \vdash 0:$ public, $E^{\prime} \vdash n$: secret, $E^{\prime} \vdash K$: secret and $E^{\prime} \vdash$ halt.

