
A one message protocol using cryptography, where KAB is a symmetric key

shared between A and B for private communication.

A −→ B : {M}KAB
on cAB

This can be represented as

A , sendcAB
〈{M}KAB

〉; halt

B , recvcAB
(x); case x of {y}KAB

: F (y)

P , new KAB; (A | B)

The key KAB is restricted, only A and B can use it.

The channel cAB is public. Other principals may send messages on it or listen

on it.

P can make silent transitions to new KAB;F (M).

364

Formal semantics

We now need to define how processes execute.

For example we would like

sendc〈M〉;P | recvc(x);Q
τ

−→ P | Q[M/x]

where τ denotes a silent action (internal communication).

Let fn(M) and fn(P) be the set of free names in term M and process P

respectively.

Let fv(M) and fv(P) be the set of free variables in term M and process P

respectively.

Closed processes are processes without any free variables.

365

Let P , new c; new K; recvd(x); case x of {y}K′ : sendd〈{y}K , z, c〉; halt.

We have

fn(sendd〈{y}K , z, c〉; halt) = {c, d,K}

fv(sendd〈{y}K , z, c〉; halt) = {y, z}

fn(case x of {y}K′ : sendd〈{y}K , z, c〉; halt) = {c, d,K,K ′}

fv(case x of {y}K′ : sendd〈{y}K , z, c〉; halt) = {x, z}

fn(P) = {d,K ′}

fv(P) = {z}

fn({y}K) = {K}

fv({y}K) = {y}

366

First we define reduction relation > on closed processes:

repeat P > P | repeat P

check (M == M);P > P

let (x, y) = (M,N);P > P [M/x,N/y]

case 0 of 0 : P, succ (x) : Q > P

case succ (M) of 0 : P, succ (x) : Q > Q[M/x]

case {M}N of {x}N : P > P [M/x]

367

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0);P (comparison fails).

let (x, y) = 0;P (unpairing fails)

case (M,N) of 0 : P, succ (x) : Q (not an integer)

case (M,N) of {x, y}K : P (not an encrypted message)

case {M,N}K′ of {x, y}K : P where K 6= K ′

368

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.

check (0 == succ (0);P (comparison fails).

let (x, y) = 0;P (unpairing fails)

case (M,N) of 0 : P, succ (x) : Q (not an integer)

case (M,N) of {x, y}K : P (not an encrypted message)

case {M,N}K′ of {x, y}K : P where K 6= K ′

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.

368-a

A barb β is either

• a name n (representing input on channel n), or

• a co-name n (representing output on channel n)

An action is either

• a barb (representing input or output to the outside world), or

• τ (representing a silent action i.e. internal communication)

We write P
α

−→ Q to mean that P makes action α after which Q is the

remaining process that is left to be executed.

369

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

370

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

370-a

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which Q will be executed.

370-b

Commitment relation Consider again sendc〈M〉;P | recvc(x);Q

The first subprocess makes an output action on channel c.

We will represent it as sendc〈M〉;P
c

−→ 〈M〉P .

〈M〉P is called a concretion: it represents a commitment to output message M

after which P will be executed.

The second subprocess makes an input action on channel c.

We will represent it as recvc(x);Q
c

−→ (x)Q.

(x)Q is called an abstraction:it represents a commitment to input some x after

which Q will be executed.

Abstractions and concretions can be combined:

〈M〉P @ (x)Q = P | Q[M/x]

370-c

Formally an abstraction F is of the form

(x1, . . . , xk)P

where k ≥ 0 and P is a process.

A concretion C is of the form

(new n1, . . . , nl)〈M1, . . . ,Mk〉P

where n1, . . . , nl are names, l, k ≥ 0 and P is a process.

371

Formally an abstraction F is of the form

(x1, . . . , xk)P

where k ≥ 0 and P is a process.

A concretion C is of the form

(new n1, . . . , nl)〈M1, . . . ,Mk〉P

where n1, . . . , nl are names, l, k ≥ 0 and P is a process.

For F , (x1, . . . , xk)P and C , (new n1, . . . , nl)〈M1, . . . ,Mk〉Q

with {n1, . . . , nl} ∩ fn(P) = ∅ we define interaction of F and C as

F @ C , new n1; . . . new nl; (P [M1/x1, . . . ,Mk/xk] | Q)

C @ F , new n1; . . . new nl; (Q | P [M1/x1, . . . ,Mk/xk])

371-a

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

372

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P

372-a

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P

372-b

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P

P
m
−→ F Q

m
−→ C

P | Q
τ

−→ F @ C

372-c

An agent A is an abstraction, concretion or a process.

We write the commitment relation as P
α

−→ A where P is a closed process, A

is a closed agent (fv(A) = ∅) and α is an action.

sendm〈M1, . . . ,Mk〉;P
m
−→ (new)〈M1, . . . ,Mk〉P

recvm(x1, . . . , xk);P
m
−→ (x1, . . . , xk)P

P
m
−→ F Q

m
−→ C

P | Q
τ

−→ F @ C

P
m
−→ C Q

m
−→ F

P | Q
τ

−→ C @ F

372-d

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

373

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

373-a

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

373-b

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

373-c

Example

Define

P , sendc〈succ (0)〉; halt

Q , recvc(x); case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

From our rules we have

P
c

−→ 〈succ (0)〉halt

(〈M1, . . . , Mk〉P
′ denotes (new)〈M1, . . . , Mk〉P

′)

Q
c

−→ (x)case x of 0 : halt, succ (y) : (sendd〈y〉; halt)

P | Q
τ

−→ halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)

d
−→ 〈0〉(halt | halt) using the following rules. . .

373-d

P > Q Q
α

−→ A

P
α

−→ A

P
α

−→ A

P | Q
α

−→ A | Q

Q
α

−→ A

P | Q
α

−→ P | A

where

P1 | (x1, . . . , xk)P2 , (x1, . . . , xk)(P1 | P2)

P1 | (new n1, . . . , nk)〈M1, . . . ,Ml〉P2 , (new n1, . . . , nk)〈M1, . . . ,Ml〉(P1 | P2)

provided that x1, . . . , xk /∈ fv(P1) and n1, . . . , nk /∈ fn(P1)

374

For the previous example we have:

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt) > sendd〈0〉; halt

and

sendd〈0〉; halt
d

−→ 〈0〉halt

hence

case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ 〈0〉halt

hence

halt | case succ (0) of 0 : halt, succ (y) : (sendd〈y〉; halt)
d

−→ halt | 〈0〉halt

= 〈0〉(halt | halt)

375

Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

376

Consider P , (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)

We would like P
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

but not P
τ

−→ P1[0/x] | new n; (P2 | recvc(x);P3)

Hence we have the rule

P
α

−→ A α /∈ {n, n}

new n;P
α

−→ new n;A

where

(new m)(x1, . . . , xk)P , (x1, . . . , xk)new m;P

(new m)(new m1, . . . ,mk)〈M1, . . . ,Ml〉P , (new m,m1, . . . ,mk)〈M1, . . . ,Ml〉P

provided that m /∈ {m1, . . . ,mk}

376-a

We have sendc〈0〉;P2

c
−→ 〈0〉P2

and recvc(x);P3

c
−→ (x)P3

hence sendc〈0〉;P2 | recvc(x);P3

τ
−→ 〈0〉P2 @ (x)P3 = P2 | P3[0/x]

Since τ /∈ {c, c}

hence new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ new c; (P2 | P3[0/x])

Hence (recvc(x);P1) | new c; (sendc〈0〉;P2 | recvc(x);P3)
τ

−→ (recvc(x);P1) | new c; (P2 | P3[0/x])

377

Consider P , (new K; sendc〈K〉; halt) | (recvc(x); sendd〈x〉; halt)

We have sendc〈K〉; halt
c

−→ (new)〈K〉halt

hence new K; sendc〈K〉; halt
c

−→ new K; (new)〈K〉halt = (new K)〈K〉halt

Also recvc(x); sendd〈x〉; halt
c

−→ (x)sendd〈x〉; halt

Hence

P
τ

−→ (new K)〈K〉halt @ (x)sendd〈x〉; halt = (new K)(halt | sendd〈K〉; halt)

378

Equivalence on processes

A test is of the form (Q,β) where Q is a closed process and β is a barb.

A process P passes the test (Q,β) iff

(P | Q)
τ

−→ Q1 . . .
τ

−→ Qn
β

−→ A

for some n ≥ 0, some processes Q1, . . . , Qn and some agent A.

Q is the ”environment” and we test whether the process together with the

environment inputs or outputs on a particular channel.

Testing preorder P1 ⊑ P2 iff for every test (Q,β), if P1 passes (Q,β) then P2

passes (Q,β).

Testing equivalence P1 ≃ P2 iff P1 ⊑ P2 and P2 ⊑ P1.

379

Secrecy

Consider process P with only free variable x.

We will consider x as secret if for all terms M,M ′ we have P [M/x] ≃ P [M ′/x].

I.e. an observer cannot detect any changes in the value of x.

Example Consider P , sendc〈x〉; halt.

x is being sent out on a public channel. Consider test (Q, d) where

environment Q , recvc(x); check (x == 0); sendd〈0〉; halt.

We have P [0/x] | Q
τ

−→ halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt).

Hence P [0/x] passes the test. However P [succ (0)/x] fails the test.

Hence P does not preserve secrecy of x.

380

Information flow analysis for the Spi-calculus

We classify data into three classes

secret data which should not be leaked

public data which can be communicated to anyone

any arbitrary data

Subsumption relation on classes:

secret � any

public � any

T � T for T ∈ {secret, public, any}

381

An environment E provides information about the classes to which names and

variables belong.

We define typing rules for the following kinds of judgments

⊢ E environment E is well formed

E ⊢ M : T term M is of class T in environment E

E ⊢ P process P is well typed in environment E

E.g. secret data should not be sent on public channels.

Data of level any should be protected as if it is of level secret, but can be

exploited only as if it had level public.

382

Our goal is to define typing rules to filter out processes that leak secrets.

Informally we would like to show that if environment E has only any variables

and public names and E ⊢ P then P does not leak any variables x ∈ dom(E).

Our previous example:

P , sendc〈x〉; halt

Consider E = {x : any, c : public :: L1, d : public :: L2}

(L1 and L2 will be explained later.)

x is of level any but is sent out on c of level public, which will be forbidden by

our typing rules.

383

Consider the protocol

A −→ S : A,B

S −→ A : {A,B,Na, {Nb}Ksb
}Ksa

A −→ B : {Nb}Ksb

A principal X may play the role of A in one session and of B in another session.

We need a clear way of distinguishing the messages received and their

components.

This is important only for messages sent on secret channels and for messages

encrypted with secret keys.

We adopt the following standard format:

Messages sent on secret channels should have three components of levels secret,

any and public respectively.

384

Consider protocol

B −→ A : Nb

A −→ B : {M,Nb}Kab

By replaying nonces, an attacker can find out whether the same M is sent

more than once, or different ones. Hence he gets

some partial information about the contents of the messages.

To prevent this we include an extra fresh nonce (confounder) in each message

encrypted with secret keys.

A −→ B : {M,Nb,Na}Kab

385

We adopt the following standard format for messages encrypted with secret

keys: {M1,M2,M3, n}K

where M1 has level secret, M2 has level any, M3 has level public,

and n is the confounder.

n can be used as confounder only in this term and nowhere else.

This information is remembered by the environment E.

I.e. if n : T :: {M1,M2,M3, n}K ∈ E then

we know that n is used as a confounder only in that message.

386

The typing rules

The empty environment is denoted ∅.

Well formed environments:

⊢ ∅

⊢ E x /∈ dom(E)

⊢ E, x : T

⊢ E

E ⊢ M1 : T1 . . . E ⊢ Mk : Tk

n /∈ dom(E)

E ⊢ N : R

⊢ E,n : T :: {M1, . . . ,Mk, n}N

387

Environment lookups and subsumption:

E ⊢ M : T T ⊑ R

E ⊢ M : R

⊢ E x : T ∈ E

E ⊢ x : T

⊢ E n : T :: {M1, . . . ,Mk, n}N ∈ E

E ⊢ n : T

388

⊢ E

E ⊢ 0 : public

E ⊢ M : T

E ⊢ succ (M) : T

E ⊢ M : T E ⊢ N : T

E ⊢ 〈M,N〉 : T

389

Encryption

E ⊢ M1 : T . . . E ⊢ Mk : T E ⊢ N : public T = public if k = 0

E ⊢ {M1, . . . ,Mk}N : T

E ⊢ M1 : secret

E ⊢ N : secret

E ⊢ M2 : any E ⊢ M3 : public

n : T :: {M1,M2,M3, n}N ∈ E

E ⊢ {M1,M2,M3, n}N : public

390

E ⊢ M : public E ⊢ M1 : public . . . E ⊢ Mk : public E ⊢ P

E ⊢ sendM 〈M1, . . . ,Mk〉;P

E ⊢ M : secret E ⊢ M1 : secret E ⊢ M2 : any E ⊢ M3 : public E ⊢ P

E ⊢ sendM 〈M1,M2,M3〉;P

Only public data may be sent on public channels.

On secret channels, data is always sent in the standard format we have agreed

upon.

We consider pairing as left-associative.

For example (M1,M2,M3,M4) is same as ((M1,M2),M3,M4)

391

Similar rules for inputs.

E ⊢ M : public E, x1 : public, . . . , xk : public ⊢ P

E ⊢ recvM (x1, . . . , xk);P

E ⊢ M : secret E, x1 : secret, x2 : any, x3 : public ⊢ P

E ⊢ recvM (x1, x2, x3);P

The appropriate class information for the input variables is added to the

environment, and the new environment is used for typing the remaining

process.

392

⊢ E

E ⊢ halt

E ⊢ P E ⊢ Q

E ⊢ P | Q

E ⊢ P

E ⊢ repeat P

E,n : T :: L ⊢ P

E ⊢ new n;P

The newly created name can be chosen to be kept secret or can be revealed,

and can be chosen to used as a confounder in some message.

393

E ⊢ M : T E ⊢ N : R E ⊢ P T ,R ∈ {public, secret}

E ⊢ check (M == N);P

Equality checks are not allowed on data of class any to prevent implicit

information flow.

394

Example Consider P , recvc(y); check (x == y); sendc〈0〉; halt where x is the

data whose secrecy we are interested in.

Secrecy of x is not maintained. P [M/x] and P [M ′/x] are not equivalent for

M 6= M ′.

Consider test (Q, d) where Q , sendc〈M〉; recvc(z); sendd〈0〉; halt.

P [M/x] | Q passes the test:

P [M/x] | Q
τ

−→ check (M = M); sendc〈0〉; halt | recvc(z); sendd〈0〉; halt
τ

−→

halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt)

P [M ′/x] | Q does not pass the test.

395

Similarly, case analysis on data of class any are disallowed.

E ⊢ M : T E, x : T , y : T ⊢ P T ∈ {public, secret}

E ⊢ let (x, y) = M ;P

E ⊢ M : T E ⊢ P E, x : T ⊢ Q T ∈ {secret, public}

E ⊢ case M of 0 : P, succ (x) : Q

396

Decryption

E ⊢ L : T E ⊢ N : public E, x1 : T , . . . , xk : T ⊢ P T ∈ {secret, public}

E ⊢ case L of {x1, . . . , xk}N : P

E ⊢ L : T E ⊢ N : secret T ∈ {secret, public}

E, x1 : secret, x2 : any, x3 : public, x4 : any ⊢ P

E ⊢ case L of {x1, x2, x3, x4}N : P

The confounder x4 in the second rule is assumed to be of type any because we

have no more information about it.

397

Typing implies noleak of information

Suppose

• ⊢ E

• all variables in dom(E) are of level any and all names in dom(E) are of

level public.

• E ⊢ P

• P has free variables x1, . . . , xk

• fn(Mi), fn(M ′

i) ⊆ dom(E) for 1 ≤ i ≤ k.

then P [M1/x1, . . . ,Mk/xk] ≃ P [M ′

1
/x1, . . . ,M

′

k/xk]

Well typed processes maintain secrecy of the free variables (x1, . . . , xk), i.e.

they are not leaked.

398

Our previous example P , recvc(y); check (x == y); sendc〈0〉; halt

We take E , {x : any, c : public :: {n}0}. c is not meant to be used as a

confounder, hence we have the dummy term {n}0.

We have ⊢ E.

In order to show E ⊢ P we need to find some T such that

E, y : public ⊢ check (x == y); sendc〈0〉; halt.

But this is impossible because equality checks should not involve data of class

any.

Hence the process doesn’t type-check, as required.

399

Consider P , new K; new m; new n; sendc〈{m,x, 0, n}K〉; halt.

We take E , {x : any, c : public :: {n}0}. We have ⊢ E.

To show E ⊢ P we choose

E′ , E,K : secret :: {K}0,m : secret :: {m}0, n : secret :: {m,x, 0, n}K

and show that E′ ⊢ sendc〈{m,x, 0, n}K〉; halt.

This is ok because E′ ⊢ m : secret, E′ ⊢ x : any, E′ ⊢ 0 : public, E′ ⊢ n : secret,

E′ ⊢ K : secret and E′ ⊢ halt.

400

