
Language Based Security

Kumar Neeraj Verma

TU München

Winter Semester 2008

1

Organization

Lectures: Wednesday, 10:15 - 11:45, room MI 02.07.014

Starting 15.10.08

Tutorials: Thursday, 10:00 - 11:45, room MI 02.07.014

Starting 30.10.08

Exam: Oral

2

Planned contents

• Buffer overflow attacks

−→ Prevention using program analysis

• Security issues in Java

• Type systems for safety

• Bytecode verification and proof carrying code

• Access control

• Information flow analysis

3

Computer Security

Some goals

• Confidentiality of information

• Authenticity

• Preventing other improper behavior like not paying for services

• Ensuring availability of services

• Preventing damage of information

4

Challenges

• Increasing complexity of software; frequent updates

• Untrusted programs

• Computer systems are not isolated

• Numerous possibilities for attacks: webpages with executables, emails,

cookies, . . .

• Financial cost of an insecurity could be huge

• Traditional OS kernel based security not sufficient to prevent attacks like

viruses in emails.

−→ Use lanuguage based security: based on program analysis and program

rewriting.

5

The Morris Worm, 1988

• One of the first known internet worms.

• Among others it exploited a buffer overflow vulnerability in fingerd.

• A worm at an infected host copied itself to other hosts by exploiting

vulnerabilities. The number of copies running at a host slowed it down to

the point of being unusable.

• An estimated 6000 machines (10 % of hosts at that time) were infected.

• Cost of the damage estimated to be $10M-100M.

New buffer overflow vulnerabilities still continue to be found.

6

The MS-SQL Slammer worm, 2003

• Exploited a buffer overflow vulnerability in Micorsoft SQL server

announced in 2002.

• Affected more than 75000 hosts, most of them within the first 10 minutes.

The Code Red worm, 2001

• Exploited a buffer overflow vulnerability in Microsoft’s IIS web server.

7

Buffer overflows

• The C language allows access to arbitrary memory locations through

improper use of pointers.

• This leads to a typical programming error of accessing a buffer (array)

beyond the space allocated for it.

• Typically exploited by stack smashing attacks involving overflowing buffers

on the stack to overwrite the return address.

• Data extracted from CERT advisories show that buffer overflows are

responsible for nearly half of todays vulnerabilities.

8

Pointers and arrays in C

For any variable we can obtain the corresponding memory location using the &

operator. The * operator gives the value stored at a memory location.

main() {

int x = 10;

int ∗p;

printf (”x = %d\n”,x);

p = &x;

∗p = 20;

printf (”x = %d\n”, x);

}

Output:

x = 10

x = 20

9

This leads to pointer arithmetic:

main() {

int x, y;

x = 10;

printf (”x = %d\n”,x);

∗((&y)+1) = 20;

printf (”x = %d\n”,x);

}

Output:

x = 10

x = 20

C allows access to arbitrary memory locations through pointers.

Here we need to know that x and y are allocated space on consecutive locations.

10

The declaration

int x,y,z;

leads to allocation of space on the stack as follows.

decreasing memory
addresses

z

y

x

SP

top of stack

(Stack Pointer,
SP, %esp)

11

Allocating space for arrays on the stack:

int a[10];

a is also the address where a[0] is stored. a[5]=10 is same as *(a+5)=10.

a
a[0]

a[9]
SP

SP

...

12

Enough ingredients for errors introduced by careless programmers!

main() {

int x,a [10], i ;

x = 10;

printf (”x = %d\n”,x);

for (i=0; i<=15; i++) a[i]=20;

printf (”x = %d\n”, x);

/∗ Note: code may require adjustment to

machine and compiler ∗/

}

x = 10

x = 20

Out of bound access in array a, leading to modification of value of x.

No checks enforced by the C language!

13

Compare with Java −→ a strongly typed language

public class Array1 {

public static void main (String args []) {

int x, a [] = new int[10], i ;

x = 10;

System.out.println (”x=” + x);

for (i=0; i<=15; i++) a[i]=20;

System.out.println (”x=” + x);

}

}

x=10

Exception in thread ”main” java.lang.ArrayIndexOutOfBoundsException: 10

at Array1.main(Array1.java:7)

14

Exceptions may then be caught and some other action taken.

public class Array2 {

public static void main (String args []) {

int x, a [] = new int[10], i ;

x = 10;

System.out.println (”x=” + x);

for (i=0; i<=15; i++)

try { a[i]=20; } catch (Exception e) { }

System.out.println (”x=” + x);

}

}

x=10

x=10

15

Function calls and stack frames

• Each time a function is called, space must be allocated for the local

variables of the function. This region of the stack is called the stack frame

for this function call.

⇒ Use a Frame Pointer (FP, %ebp) to indicate the location of the current

frame. This allows easy access to the local variables at runtime.

• On return from a function call, execution must continue from the next

instruction after the function call.

⇒ Store the old instruction pointer (PC) in the stack frame.

16

• On return from a function, the current stack frame is popped out and

execution continues with the previous stack frame.

⇒ Store the old FP on the stack.

variables
local

old FP
old IP
arg1

argn

other
values

SP

FP

17

A simple example of function call.

/∗ function.c ∗/

void f (int x, int y) {

int a,b,c;

}

int main () {

f (10, 20);

}

Let’s see the compiled code produced.

$ gdb function

. . .

18

The caller:

(gdb) disassemble main

...

0x804832f <main+19>: push $0x14

0x8048331 <main+21>: push $0xa

0x8048333 <main+23>: call 0x8048314 <f>

...

The arguments are pushed on to the stack and the function is called.

19

The caller:

(gdb) disassemble main

...

0x804832f <main+19>: push $0x14

0x8048331 <main+21>: push $0xa

0x8048333 <main+23>: call 0x8048314 <f>

...

The arguments are pushed on to the stack and the function is called.

And the callee. . .

19-a

0x8048314 <f>: push %ebp

0x8048315 <f+1>: mov %esp,%ebp

0x8048317 <f+3>: sub $0xc,%esp

0x804831a <f+6>: leave

0x804831b <f+7>: ret

• Save old FP, update FP

• Allocate space for local variables, do computations

• Restore FP, pop saved FP from stack

• Return (restore PC, pop saved PC from stack)

20

At run time: pushing arguments

push $0x14

20

10

push $0xa

SP

FP

PC

SP

FP

PC

21

Calling function: saving PC and updating PC

call p
q

20

10

SP

FP

PC

20

10

SP

FP

PC p

q

22

Inside callee: saving FP and updating FP

20

10

SP

FP

PC

q

20

10

SP

FP

PC

q

push %ebp
mov %esp,%ebp

23

Allocating space for local variables

20

10

SP

FP

PC

q

sub $0xc, %esp

a
b

c

20

10

SP

FP

PC

q

24

End of callee: restoring FP and popping saved FP

20

10

SP

FP

PC

q

a
b

c

leave

mov %ebp, %esp

pop %ebp

equivalently:

20

10

SP

FP

PC

q

25

Returning: restoring PC and popping saved PC

return
20

10

SP

FP

PC

q

20

10

SP

FP

PC q

26

The return address is stored on the stack.

⇒ it can also be overwritten to point to arbitrary code!!!

void f () {

int a [10];

a[15] += 7;

}

main () {

int x = 10;

f ();

x = 20;

printf (”x=%d!\n”,x);

}

Output:

x=10!

We have skipped the instruction x = 20; !

• Where is the return address stored (a[15])?

• What should be the new return address (increment by 7)?

27

Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

28

Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

Not always: compiler optimizations may create blank spaces around array a.

⇒ Look at the compiled code.

28-a

Organization of the stack: a[0], . . . , a[9], old FP, old PC

Hence the return address is at the location a[11].

Not always: compiler optimizations may create blank spaces around array a.

⇒ Look at the compiled code.

0x8048344 <f>: push %ebp

0x8048345 <f+1>: mov %esp,%ebp

0x8048347 <f+3>: sub $0x38,%esp

...

Space allocated after old FP is 0x38 = 56 = 4*14 bytes.

Hence return address is at address a[15]

28-b

...

0x8048369 <main+23>: call 0x8048344 <f>

0x804836e <main+28>: movl $0x14,0 xfffffffc (%ebp)

0x8048375 <main+35>: sub $0x8,%esp

...

Instruction x = 20; requires 35 - 28 = 7 bytes.

Hence we put a[15] +=7 in the function f in order to skip execution of this

instruction.

⇒ Besides modifying data, we may cause arbitrary code to be executed!

29

Weaknesses can be exploited by users by supplying appropriate inputs.

int main (int argc, char ∗argv[]) {

char s [1024];

strcpy(s ,argv [1]);

...

}

• An appropriate input is given to overwrite the return address,

• At the minimum, the program may abort abruptly.

• An ingenious attacker may get some desired code to be executed (shellcode)

by providing it as a part of the input string!

30

Heap based overflows: buffer overflows in the heap instead of the stack.

char ∗p = (char ∗) malloc (1024);

Heap

Stack

Heap

Stack

End of heap

End of heap

p

bytes
1024

Instead of overwriting return addresses, an attacker may overwrite important

variables.

31

Further errors arise because of improper use of string library functions.

In C, the end of a string is indicated by the null character.

The statement strcpy (s,t);

will keep copying characters starting from t till a null character is found,

irrespective of space allocated for s and t.

i = strlen (s);

tries to find the first null charachter beyond s.

32

Some techniques for preventing buffer overflow attacks.

• Careful programming: e.g. use strncpy instead of strcpy.

• Make the stack region non-executable: however some applications make use

of an executable stack.

• Compiler tools: save the return address at a safe place (data region).

• Run time checks: use a preloaded library which provides safer versions of

standard unsafe functions.

33

Detecting buffer overflow vulnerabilities

• Static program analysis: automated analysis of programs without running

them.

• an exact analysis of buffer overflow vulnerabilities is theoretically impossible.

=⇒ do approximate analysis:

• we fail to detect some vulnerabilities: unsafe approximation.

• or we declare certain good programs as vulnerable: safe approximation

(our approach).

• or both.

• tradeoff between efficiency of analysis and precision of analysis.

34

Use of integer analysis

Most vulnerabilities are caused due to improper string manipulation.

Modify the program to include

• integer variables representing lengths of strings, overlaps between strings,

etc.

• safety conditions before all string manipulation instructions.

Use well-known integer analysis algorithms to verify the safety conditions.

=⇒ we reduce string analysis problem to the simpler integer analysis problem.

35

Analyse instrumented C code

Dor, Rodeh and Sagiv

Original C code

char s [10];

s [15] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

assert (15 < sAlloc);

s [15] = ’a ’;

The integer variable sAlloc remembers the space allocated for string s.

The statement assert(15 < sAlloc); says that the program should abort here if

sAlloc ≤ 15.

We use an integer analysis algorithm to check that the assert conditions are

satisfied.

36

Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

37

Handling pointer arithmetic.

Original C code

char s [10];

char ∗p;

p = s + 7;

p[5] = ’a ’;

Instrumented C code

char s [10]; int sAlloc = 10;

char ∗p; int pAlloc = 0;

assert (7 <= sAlloc);

p = s + 7; pAlloc = sAlloc - 7;

assert (5 < pAlloc);

p[5] = ’a ’;

The second assert condition does not hold, as desired.

37-a

