
Complex control flow constructs are automatically handled.

char s [10];

int i ;

for (i=0; i<=15; i++) {

s [i] = ’a ’;

}

char s [10]; int sAlloc = 10;

int i ;

for (i=0; i <=15; i++) {

assert (i < sAlloc);

s [i] = ’a ’;

}

The asserted condition will be violated at some point during the execution of

the program, as desired.

38

String manipulation functions like strcpy, strlen, strcat should be treated

directly, without analyzing their code.

char s [10];

char t [10];

strcpy (s , t);

This code is vulnerable.

Cannot be detected from information about sAlloc and tAlloc.

Need further variables:

sIsNull s is a null terminated string (boolean)

sLen length of s

39

Instrumented code

char s [10]; int sAlloc=10, sIsNull=false, sLen;

char t [10]; int tAlloc=10, tIsNull=false, tLen;

assert (tIsNull && tLen < sAlloc)

strcpy (s , t);

sIsNull=true; sLen=tLen;

The asserted condition is violated, as desired.

40

char ∗p; int pAlloc=0, pIsNull=false, pLen;

char s [20]; int sAlloc=20, sIsNull=false, sLen;

p=”Hello World!”; pAlloc=13; pIsNull=true; pLen=12;

assert(pIsNull && pLen < sAlloc)

strcpy(s ,p);

sIsNull=true; sLen=pLen;

The asserted condition holds, as desired.

41

Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails. ⇒ Bad analysis.

After the first strcpy, the variables qIsNull and qLen are not updated.

42

Dealing with string overlaps.

char ∗p, ∗q, s [20], t [20]; ... instrumentation code ...

p=”Hello World!”; ...

q=s+6; ...

/* here qIsNull == sIsNull == false */

strcpy(s ,p); sIsNull=true; sLen=pLen;

/* here sIsNull == true, qIsNull == false */

assert (qIsNull && qLen < tAlloc)

strcpy(t ,q); ...

The asserted condition for second strcpy fails. ⇒ Bad analysis.

After the first strcpy, the variables qIsNull and qLen are not updated.

=⇒ need further variables for keeping track of overlaps between strings.

42-a

Putting together

The required list of variables:

sAlloc space allocated for string ccodes

sIsNull whether string s is null terminated

sLen length of string s

s overlaps t whether strings s and t point inside the same allocated buffer

s diff t amount of overlap between strings s and t

s overlaps t is same as t overlaps s.

s diff t = - t diff s.

43

Schema for instrumenting the C code.

C statement =⇒

assert (condition)

C statement

update statements

Clean program: all the string operations have a well defined output (according

to standard specifications.)

The instrumentation preserves the bahaviour of clean C programs.

In a program is unclean, the condition for the corresponding statement is

violated at some time during execution.

44

Allocation

C statement

char s [20];

condition

true

update

sAlloc = 20;

sIsNull = false;

FOREACH a

a overlaps s = false

No safety conditions required.

The string is not null-terminated and has no overlap with any other string.

45

Allocation

p = malloc(exp) true

if (p)

pAlloc = exp;

else pAlloc = 0;

pIsNull = false;

FOREACH a

a overlaps p = false;

If allocation fails then no space is allocated for the string.

46

Constant string assignment

s = ”some string”; true

sAlloc = 12;

sIsNull = true;

sLen = 11;

FOREACH a

s overlaps a = false;

No assertion conditions.

The string is null terminated and has no overlap with other strings.

Safe even with other pointers to the same string constant, as no updates are

allowed in memory-region where constant strings are stored.

47

Pointer arithmetic For simplicity consider only exp ≥ 0

C statement

p = q + exp;

condition

exp <= qAlloc

update

pAlloc = qAlloc - exp;

p overlaps q = true; p diff q = exp;

FOREACH a

p overlaps a = q overlaps a;

p diff a = q diff a + exp;

...

48

...

if (qIsNull && qLen >= exp) {

pIsNull = true; pLen = qLen - exp;

} else RECOMPUTE (p);

#define RECOMPUTE (s)

sLen = strlen(s);

sIsNull = (sLen < sAlloc ? true : false)

/∗ however strlen cannot be analyzed precisely! ∗/

a q p

pa q

0

0 0

case 1

case 2

49

String update We consider only i ≥ 0

C statement

s [i] = exp;

condition

i < sAlloc

Update

if (exp == 0) {

if (!sIsNull || sLen > i) {

sIsNull = true;

sLen = i;

}

FOREACH a

DESTRUCTIVE UPDATE (a,s)

}

s[0]

0

s[i]

s[0]

0

s[i]

case 1

case 2

50

else {

if (sIsNull && i == sLen)

RECOMPUTE (s);

FOREACH a

DESTRUCTIVE UPDATE (a,s);

}

s[0] s[i]

0

51

DESTRUCTIVE UPDATE

The string s has been modified and variables sIsNull and sLen have been

updated. The corresponding variables for overlapping strings need to be

updated.

#define DESTRUCTIVE UPDATE (a,s)

if (a overlaps s)

if (sIsNull && a diff s <= sLen &&

(!aIsNull || a diff s >= −aLen)) {

aIsNull = true;

aLen = sLen − a diff s;

} else RECOMPUTE (a);

as

0

s

0

a

old aLen

52

Library functions: strcpy

C statement

strcpy (s , t);

condition

tIsNull & tLen < sAlloc

update

sIsNull = true;

sLen = tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

The copied string should be null terminated and the destination should have

enough space.

53

Library functions: strcat

C statement

strcat (s , t);

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

54

Library functions: strcat

C statement

strcat (s , t);

condition

sIsNull && tIsNull

&& tLen + sLen < sAlloc

update

sLen = sLen + tLen;

FOREACH a

DESTRUCTIVE UPDATE (a,s);

Both the source and destination strings should be null terminated before

concatenation.

Normal functions: not yet considered.

54-a

Given a C program, we have shown how to compute an instrumented C

program which preserves the semantics.

If the original C program is clean then the instrumented C program has the

same behaviour and all assertions always hold.

If the original C program has an unclean expression then the corresponding

assertion will be false at some time.

Next, we use integer analysis algorithms to check whether any of the assertions

are violated.

55

A program state at a certain point of time during the program execution tells

us the value of each program variable at that time.

Execution of an instruction leads to a modification in the program state.

Each program point can be reached several times during execution (loops).

Hence several program states are possible at each program point.

Goal: for each program point, compute an upper approximation of the set of

possible program states.

56

Upper approximation of the set of possible states is a safe approximation.

Scenario 1:

char s [20];

for (i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [j] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i ≤ 9∧0 ≤ j ≤ 18 upper approximation

We conclude that the program is clean safe

57

Upper approximation of the set of possible states is a safe approximation.

Scenario 2:

char s [20];

for (i=0; i<10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [j] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(9, 18)

Suppose our analysis tells us that at this program point:

0 ≤ i < ∞∧0 ≤ j < ∞ upper approximation

We conclude that the program is not clean safe

58

Upper approximation of the set of possible states is a safe approximation.

Scenario 3:

char s [20];

for (i=0; i<=10; i++) {

j = 2 ∗ i ;

/∗ j is hopefully < 20 ∗/

s [j] = ’a ’;

}

The possible values of (i, j) before the string update operation are

(0, 0), (1, 2), (2, 4)...(10, 20)

We compute upper approximation of the set of possible states.

Hence our analysis should always tell us that j can become 20.

We conclude that the program is not clean safe

59

We transform the instrumented program to a program with only integer

variables =⇒ further safe approximation.

e1 is non-integer variable:

e1 = e2; =⇒ ;

e contains non-integer variables and constants:

x = e; =⇒ x = ?;

if (e) s1 else s2 =⇒ if (?) s1 else s2

Similarly for loops

The expression ? can take all possible values non-deterministically.

(In practice, use a special uninitialized variable in its place.)

Safe approximation: all executions of the original program are still allowed

after approximation.

60

Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for (i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [j] = ’a ’; if (97 == 0) ...

}

61

Instrumented program

char s [20]; int sAlloc=20, sIsNull=false, sLen;

for (i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

s [j] = ’a ’; if (97 == 0) ...

}

Corresponding integer program

int sAlloc=20, sIsNull=false, sLen;

for (i=0; i<=10; i++) {

j = 2 ∗ i ; assert (sAlloc > j)

if (97 == 0) ...

}

61-a

This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [i] = 0; if (0==0) { if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}...

62

This may involve some safe approximation

Instrumeted program:

char s [10], ∗t; ...

t = ”Hello!”; tAlloc = 7; tIsNull = 0; tLen=6; ...

strcpy (s , t); ...sLen=tLen

if (s[0]==72) i = 5; else i = 6;

s [i] = 0; if (0==0) { if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}...

Integer program:

... int any;

tAlloc = 7; tIsNull = 0; tLen=6; ...

...sLen=tLen

if (any) i = 5; else i = 6;

if (0==0) { if (!sIsNull || sLen > i) {

sIsNull=true; sLen=i;}...

62-a

Program analysis for integers relations

Our methodology:

Program

Analysis problem

Constraints/equations

Precise analysis interpretation

Constraints/equations
over simpler domain

Approximate analysis

abstract

Precise analysis: e.g.: what values are

taken by variable x at a

certain program point?

infinite domain: Z

Approximate analysis: e.g.: does variable x ever

take a negative value at a

certain program point?

finite domain: {+,−, 0}

63

We consider a set Vars of variables ranging over integers.

Program consists of statements of the form

NOP ;

Assignments x = e;

Conditions if (e) s1 else s2

Jumps goto L

While and for loops: translated using conditions and goto statements.

64

We represent programs using control flow graphs (CFGs).

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

Distinguished start and stop nodes.

Edges k are of the form (u, l, v)

where u and v are nodes and label l

is an assignment or a condition.

65

