The set of possible states state of the program is

$$
\mathcal{S}=\operatorname{Vars} \rightarrow \mathbb{Z}
$$

The evaluation of an arithmetic expression e under state $\rho \in \mathcal{S}$ is denoted

$$
\llbracket e \rrbracket \rho: \mathbb{Z}
$$

An edge $k=(u, l, v)$ induces a partial transformation on program states. The transformation depends only on the label l.

$$
\begin{aligned}
& \llbracket k \rrbracket \rho=\llbracket l \rrbracket \rho \\
& \text { where } \llbracket l \rrbracket: \mathcal{S} \rightarrow \mathcal{S} \\
& \llbracket ; \rrbracket \rho \quad=\rho ; \\
& \llbracket x=e ; \rrbracket \rho \quad=\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad / / i . e . \rho \text { modified at point } x \\
& \llbracket e_{1} \geq e_{2} \rrbracket \rho=\rho \quad \text { if } \llbracket e_{1} \rrbracket \rho \geq \llbracket e_{2} \rrbracket \rho
\end{aligned}
$$

A path π is a sequence of consequetive edges in the CFG.

$$
\begin{gathered}
u_{0} \xrightarrow[l_{1}]{l_{2}} u_{1} \\
\pi=k_{1}, \ldots, k_{n} \text { where each } k_{i} \text { is of the form }\left(u_{i-1}, l_{i}, u_{i}\right) . \\
\text { We write } \pi: u_{0} \rightarrow^{*} u_{n}
\end{gathered}
$$

The transformation induced by a path is the composition of the transformations induced by the edges.

$$
\llbracket \pi \rrbracket=\llbracket k_{n} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket
$$

Each node can be reached through possibly infinitely many paths, leading to infinitely many different states at each program point.

We are interested in the set of all such states at each program point.

Suppose we know that a set V of states is possible at a node u.

By following an edge $k=(u, l, v)$, a new set of states becomes possible at node v. This set is denoted $\llbracket k \rrbracket^{\sharp} V=\llbracket l \rrbracket^{\sharp} V: 2^{\mathcal{S}} \rightarrow 2^{\mathcal{S}}$.

We define abstract transformation

$$
\llbracket l \rrbracket^{\sharp} V=\{\llbracket l \rrbracket \rho \mid \rho \in V \text { and } \llbracket l \rrbracket \text { is defined for } \rho\} \text {. }
$$

As before, $\llbracket k_{1}, \ldots, k_{n} \rrbracket^{\sharp} V=\left(\llbracket k_{n} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}\right) V$.

At the start node, all states are possible.
For each node v we want to compute the set

$$
\mathcal{V}^{*}[v]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} \mathcal{S} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Example

u	$\mathcal{V}^{*}[u]$
0	$-\infty<i, j<\infty$
1	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 11 \wedge j=2 i-2$
2	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i-2$
3	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i$
4	$i=11 \wedge j=20$

Example

u	$\mathcal{V}^{*}[u]$
0	$-\infty<i, j<\infty$
1	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 11 \wedge j=2 i-2$
2	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i-2$
3	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i$
4	$i=11 \wedge j=20$

How to compute the sets $\mathcal{V}^{*}[v]$ in general?

Example

u	$\mathcal{V}^{*}[u]$
0	$-\infty<i, j<\infty$
1	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 11 \wedge j=2 i-2$
2	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i-2$
3	$i=0 \wedge-\infty<j<\infty$ $\vee 1 \leq i \leq 10 \wedge j=2 i$
4	$i=11 \wedge j=20$

How to compute the sets $\mathcal{V}^{*}[v]$ in general?
In general they are not computable!

We set up a constraint system.

$\mathcal{V}[0] \supseteq \mathcal{S}$
$\mathcal{V}[1] \supseteq \llbracket i=0 ; \rrbracket \mathcal{V}[0]$
$\mathcal{V}[1] \supseteq \llbracket i=i+1 ; \rrbracket \mathcal{V}[3]$
$\mathcal{V}[2] \supseteq \llbracket i \leq 10 \rrbracket \mathcal{V}[1]$
$\mathcal{V}[3] \supseteq \llbracket j=2 * i ; \rrbracket \mathcal{V}[2]$
$\mathcal{V}[4] \supseteq \llbracket i>10 \rrbracket \mathcal{V}[1]$

We set up a constraint system.

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq & \mathcal{S} \\
\mathcal{V}[1] \supseteq & \llbracket i=0 ; \mathbb{V}[0] \\
\mathcal{V}[1] \supseteq \llbracket i=i+1 ; \rrbracket \mathcal{V}[3] \\
\mathcal{V}[2] \supseteq \llbracket i \leq 10 \rrbracket \mathcal{V}[1] \\
\mathcal{V}[3] \supseteq \llbracket j=2 * i] \mathcal{V}[2] \\
\mathcal{V}[4] \supseteq \llbracket i>10 \rrbracket \mathcal{V}[1]
\end{array}
$$

The least solution (wrt \subseteq) of the constraints is exactly \mathcal{V}^{*}.

The least solution (wrt \subseteq) of the constraints is exactly \mathcal{V}^{*}.

Is this always true?

Does such a constraint system always have a least solution?

Is it computable? Efficiently?

An idea: do iterative computation of reachable states.

$\mathcal{V}[0]$	\emptyset	$\mathbb{Z} \times \mathbb{Z}$
$\mathcal{V}[1]$	\emptyset	$\{0\} \times \mathbb{Z}$
$\mathcal{V}[2]$	\emptyset	$\{0\} \times \mathbb{Z}$
$\mathcal{V}[3]$	\emptyset	
$\mathcal{V}[4]$	\emptyset	

An idea: do iterative computation of reachable states.

An idea: do iterative computation of reachable states.

$$
\begin{array}{llll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \\
\mathcal{V}[4] & \emptyset & & \\
\hline
\end{array}
$$

An idea: do iterative computation of reachable states.

$$
\begin{array}{llll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \\
\mathcal{V}[4] & \emptyset & &
\end{array}
$$

An idea: do iterative computation of reachable states.

$$
\begin{array}{llll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \{(0,0),(1,2)\} \\
\mathcal{V}[4] & \emptyset & &
\end{array}
$$

An idea: do iterative computation of reachable states.

$$
\begin{array}{lllll}
\mathcal{V}[0] & \emptyset & \mathbb{Z} \times \mathbb{Z} & & \\
\mathcal{V}[1] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} & \\
\mathcal{V}[2] & \emptyset & \{0\} \times \mathbb{Z} & \{0\} \times \mathbb{Z} \cup\{(1,0)\} & \cdots \\
\mathcal{V}[3] & \emptyset & \{(0,0)\} & \{(0,0),(1,2)\} & \\
\mathcal{V}[4] & \emptyset & & & \\
\hline
\end{array}
$$

Problem: too many iterations, infinite loops.
Solution: approximate computation of possible states.

Problem: too many iterations, infinite loops.
Solution: approximate computation of possible states.

Interpretation of our result: the values of i at node 1 is included in \mathbb{Z} the values of i at node 2 is included in \mathbb{Z}^{+}
This information we obtain is accurate.

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

We require an ordering \sqsubseteq on the elements of this domain.
$\emptyset \sqsubseteq \mathbb{Z}^{-} \quad \emptyset \sqsubseteq \mathbb{Z}^{+} \quad \mathbb{Z}^{-} \sqsubseteq \mathbb{Z} \quad \mathbb{Z}^{+} \sqsubseteq \mathbb{Z}$
Read $x \sqsubseteq y$ as " y is imprecise information compared to x ".

In general we have some domain \mathbb{D}.
Examples: $2^{\mathcal{S}}, 2^{\mathbb{Z}},\left\{\emptyset, \mathbb{Z}^{-}, \mathbb{Z}^{+}, \mathbb{Z}\right\}$, the set of intervals over \mathbb{Z}.

We require an ordering \sqsubseteq on the elements of this domain.
$\emptyset \sqsubseteq \mathbb{Z}^{-} \quad \emptyset \sqsubseteq \mathbb{Z}^{+} \quad \mathbb{Z}^{-} \sqsubseteq \mathbb{Z} \quad \mathbb{Z}^{+} \sqsubseteq \mathbb{Z}$
Read $x \sqsubseteq y$ as " y is imprecise information compared to x ".

We further require operations like least upper bounds.

$$
\mathbb{Z}^{-} \sqcup \mathbb{Z}^{+}=\mathbb{Z}
$$

A brief discussion of complete lattices

Recall: a set \mathbb{D} with relation \sqsubseteq is a partial order if the following conditions hold for all $x, y, z \in \mathbb{D}$.

- Reflexivity: $x \sqsubseteq x$.
- Antisymmetry: $x \sqsubseteq y$ and $y \sqsubseteq x$ then $x=y$.
- Transitivity: if $x \sqsubseteq y$ and $y \sqsubseteq z$ then $x \sqsubseteq z$.

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.
$d \in \mathbb{D}$ is called least upper bound of $X \subseteq \mathbb{D}$ if

- d is an upper bound of X
- $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of X

An element $d \in \mathbb{D}$ is called an upper bound of a set $X \subseteq \mathbb{D}$ if $x \sqsubseteq d$ for all $x \in X$.
$d \in \mathbb{D}$ is called least upper bound of $X \subseteq \mathbb{D}$ if

- d is an upper bound of X
- $d \sqsubseteq d^{\prime}$ for every upper bound d^{\prime} of X

A partial order $(\mathbb{D}, \sqsubseteq)$ is called a complete lattice if every $X \subseteq \mathbb{D}$ has a least upper bound $\bigsqcup X$.

We write $x \sqcup y$ for $\bigsqcup\{x, y\}$.

For $\left(2^{\mathcal{S}}, \subseteq\right)$ we have $\bigsqcup X=\bigcup X$.

Some complete lattices.

$$
\begin{aligned}
& \mathbb{Z}^{-}=\{x \in \mathbb{Z} \mid x<0\} \\
& \mathbb{Z}^{+}=\{x \in \mathbb{Z} \mid x \geq 0\}
\end{aligned}
$$

An infinite complete lattice : $\left(2^{\mathbb{Z}}, \subseteq\right)$.

Every complete lattice has

- a top element: $T=\bigsqcup \mathbb{D}$
- a bottom element: $\perp=\bigsqcup \emptyset$

Further every $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

Every complete lattice has

- a top element: $\top=\bigsqcup \mathbb{D}$
- a bottom element: $\perp=\bigsqcup \emptyset$

Further every $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

Proof: exercise.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x+1$ is monotone.
Note: (\mathbb{Z}, \leq) is not a complete lattice.

A function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotone if:

$$
f(x) \sqsubseteq f(y) \text { whenever } x \sqsubseteq y
$$

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f(x)=x+1$ is monotone.
Note: (\mathbb{Z}, \leq) is not a complete lattice.

The transformations induced by the program edges are monotone:
Recall: $\llbracket l \rrbracket \rrbracket^{\sharp}: 2^{\mathcal{S}} \rightarrow 2^{\mathcal{S}}$
$\llbracket l \rrbracket^{\sharp} V=\{\llbracket l \rrbracket \rho \mid \rho \in V$ and $\llbracket l \rrbracket$ is defined for $\rho\}$. Hence if $V_{1} \subseteq V_{2}$ then $\llbracket l \rrbracket^{\sharp} V_{1} \subseteq \llbracket l \rrbracket^{\sharp} V_{2}$.

Some facts:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $g: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotone then the composition $g \circ f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$ is monotone.

Some facts:

If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ and $g: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3}$ are monotone then the composition $g \circ f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$ is monotone.

If \mathbb{D}_{2} is a complete lattice then the set $\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ of monotone functions $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is a complete lattice,
where $f \sqsubseteq g$ iff $f(x) \sqsubseteq g(x)$ for all $x \in \mathbb{D}_{1}$.
For $F \subseteq\left[\mathbb{D}_{1} \rightarrow \mathbb{D}_{2}\right]$ we have

$$
\bigsqcup F=f \text { with } f(x)=\bigsqcup\{g(x) \mid g \in F\}
$$

For our program analysis problem, we want the least solution of the constraint system

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq \mathcal{S} & \text { (0 is the start node) } \\
\mathcal{V}[v] \supseteq \llbracket l \rrbracket^{\sharp} \mathcal{V}[u] & \text { for every edge }(u, l, v) .
\end{array}
$$

We have the domain $\mathbb{D}=2^{\mathcal{S}}$. Choose a variable for each set $\mathcal{V}[v]$.
We obtain a constraint system of the form

$$
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right) \quad(1 \leq i \leq n)
$$

Example

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq & \mathcal{S} \\
\mathcal{V}[1] \supseteq & \llbracket i=0 ; \rrbracket \mathcal{V}[0] \\
\mathcal{V}[1] \supseteq & \llbracket i=i+1 ; \rrbracket \mathcal{V}[3] \\
\mathcal{V}[2] \supseteq & \llbracket i \leq 10 \rrbracket \mathcal{V}[1] \\
\mathcal{V}[3] \supseteq & \llbracket j=2 * i ; \rrbracket \mathcal{V}[2] \\
\mathcal{V}[4] \supseteq & \llbracket i>10 \rrbracket \mathcal{V}[1]
\end{array}
$$

Example

$$
\begin{array}{ll}
\mathcal{V}[0] \supseteq & \mathcal{S} \\
\mathcal{V}[1] \supseteq & \llbracket i=0 ; \mathbb{V}[0] \\
\mathcal{V}[1] \supseteq \llbracket i=i+1 ; \rrbracket \mathcal{V}[3] \\
\mathcal{V}[2] \supseteq \llbracket i \leq 10 \rrbracket \mathcal{V}[1] \\
\mathcal{V}[3] \supseteq \llbracket j=2 * i] \mathcal{V}[2] \\
\mathcal{V}[4] \supseteq \llbracket i>10 \rrbracket \mathcal{V}[1]
\end{array}
$$

Transforms to ...

Example

Since \mathbb{D} is a lattice, \mathbb{D}^{n} is also a lattice where

$$
\left(d_{1}, \ldots, d_{n}\right) \sqsubseteq\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right) \text { iff } d_{i} \sqsubseteq d_{i}^{\prime} \text { for } 1 \leq i \leq n
$$

The functions $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotone.

Define $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ as

$$
F(y)=\left(f_{1}(y), \ldots, f_{n}(y)\right) \text { where } y=\left(x_{1}, \ldots, x_{n}\right)
$$

F is also monotone.
We need least solution of $y \sqsupseteq F(y)$.

Idea: use iteration
Start with the least element \perp and compute the sequence $\perp, F(\perp), F^{2}(\perp), F^{3}(\perp), \ldots$

Do we always reach the least solution in this way?

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

$$
\begin{array}{|c|c|c|c|c|}
\hline x & \perp & \perp & \top & \\
y & \perp & \perp & \perp & \\
z & \perp & \top & \top & \\
\hline
\end{array}
$$

We have $F^{2}(\perp)=F^{3}(\perp)$.

Example: the complete lattice of Booleans: $\mathbb{D}=\{\perp, \top\}$.
Constraint system:

$$
\begin{aligned}
& x \sqsupseteq y \vee z \\
& y \sqsupseteq x \wedge y \wedge z \\
& z \sqsupseteq \top
\end{aligned}
$$

The iteration:

$$
\begin{array}{|c|c|c|c|c|}
\hline x & \perp & \perp & \top & \top \\
y & \perp & \perp & \perp & \perp \\
z & \perp & \top & \top & \top \\
\hline
\end{array}
$$

We have $F^{2}(\perp)=F^{3}(\perp)$.

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

In fact it also the least solution of $F(x) \sqsubseteq x$.

Such an iteration produces an ascending chain

$$
\perp \sqsubseteq F(\perp) \sqsubseteq F^{2}(\perp) \sqsubseteq F^{3}(\perp) \ldots
$$

Further if $F^{k}(\perp)=F^{k+1}(\perp)$ for some k
then clearly $F^{k}(\perp)$ is some solution of the constraint $F(x) \sqsubseteq x$.

In fact it also the least solution of $F(x) \sqsubseteq x$.

Such a k always exists if the lattice is finite.
What in case of infinite lattices?

Constraint system:

$$
\begin{aligned}
\mathcal{V}[0] & \supseteq \mathbb{Z} \\
\mathcal{V}[1] & \supseteq\{0\} \cup\{x+2 \mid x \in \mathcal{V}[1]\}
\end{aligned}
$$

The least solution:

$$
\mathcal{V}[0]=\mathbb{Z} \text { and } \mathcal{V}[1]=\{2 n \mid n \geq 0\} .
$$

Iteration doesn't terminate:

	\perp	$F(\perp)$	$F^{2}(\perp)$	$F^{3}(\perp)$	
$\mathcal{V}[0]$	\emptyset	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\cdots
$\mathcal{V}[1]$	\emptyset	$\{0\}$	$\{0,2\}$	$\{0,2,4\}$	

Fact: In a complete lattice \mathbb{D}, every monotone function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that $f(x)=x$.
Prefixpoint: an element x such that $f(x) \sqsubseteq x$.

Fact: In a complete lattice \mathbb{D}, every monotone function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixpoint a.

Fixpoint: an element x such that $f(x)=x$.
Prefixpoint: an element x such that $f(x) \sqsubseteq x$.

Let $P=\{x \in \mathbb{D} \mid f(x) \sqsubseteq x\}$ (the set of prefixpoints).
ΠP is the least prefixpoint as well as the least fixpoint of f.

Example 1: Consider partial order $\mathbb{D}_{1}=\mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots$
The function $f(x)=x+1$ is monotonic.
However it has no fixpoint.
Actually \mathbb{D}_{1} is not a complete lattice.

Example 1: Consider partial order $\mathbb{D}_{1}=\mathbb{N}$ with $0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq \ldots$.
The function $f(x)=x+1$ is monotonic.
However it has no fixpoint.
Actually \mathbb{D}_{1} is not a complete lattice.

Example 2: Now we consider $\mathbb{D}_{2}=\mathbb{N} \cup\{\infty\}$.
This is a complete lattice.
The function $f(x)=x+1$ is again monotonic.
The only fixpoint is ∞ : $\infty+1=\infty$.

Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.
Example: intervals as abstract values:

The analysis guarantees e.g. that at node 1 the value of i is always in the interval $[0,12]$.

We have the set of concrete states $\mathcal{S}=(\operatorname{Vars} \rightarrow \mathbb{Z})$.
We choose a complete lattice \mathbb{D} of abstract states.
We define an abstraction relation

$$
\Delta: \mathcal{S} \times \mathbb{D}
$$

with the condition that

The concretization function: $\quad \gamma(a)=\{\rho \mid \rho \Delta a\}$.

Example: For a program on two integer variables, Vars $=\{x, y\}$.

The concrete states are from the set $\mathcal{S}=(\operatorname{Vars} \rightarrow \mathbb{Z})$ (or equivalently $\left.\mathbb{Z}^{2}\right)$.

For interval analysis, we choose the complete lattice

$$
\mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}=(\text { Vars } \rightarrow \mathbb{I}) \cup\{\perp\}
$$

where $\mathbb{I}=\{[l, u] \mid l \in \mathbb{Z} \cup\{-\infty\}, u \in \mathbb{Z} \cup\{\infty\}, l \leq u\}$ is the set of intervals.

Partial order on $\mathbb{I}:\left[l_{1}, u_{1}\right] \sqsubseteq\left[l_{2}, u_{2}\right]$ iff $l_{1} \geq l_{2}$ and $u_{1} \leq u_{2}$
(As usual, $-\infty \leq n \leq \infty$ for all $n \in \mathbb{Z}$.)

Partial order on Vars $\rightarrow \mathbb{I}: \quad D_{1} \sqsubseteq D_{2} \quad$ iff $D_{1}(x) \sqsubseteq D_{2}(x)$.
Extension to $(\operatorname{Vars} \rightarrow \mathbb{I})_{\perp}: \quad \perp \sqsubseteq D \quad$ for all D.
$(\operatorname{Vars} \rightarrow \mathbb{I})_{\perp}$ is a complete lattice. $(\operatorname{Vars} \rightarrow \mathbb{I})$ is not.

In particular we define $\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]$.

\perp represents the "unreachable state": maps every variable to the "empty interval".

The abstraction relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \text { and } \rho(x) \Delta D(x) \text { for each } x .
$$ where $n \Delta[l, u]$ iff $l \leq n \leq u$.

The abstraction relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \text { and } \rho(x) \Delta D(x) \text { for each } x .
$$

where $n \Delta[l, u]$ iff $l \leq n \leq u$.

This satisfies the required condition:
Suppose $\quad \rho \Delta D_{1}$ and $D_{1} \sqsubseteq D_{2}$.
$\Longrightarrow \quad D_{1} \neq \perp$ and $D_{2} \neq \perp$.
$\rho(x) \quad \Delta \quad D_{1}(x)$ and $D_{1}(x) \sqsubseteq D_{2}(x)$ for each x.
$\Longrightarrow \quad \rho(x) \Delta D_{1}(x)$ for each x.

$$
\cdot \rho(x) \quad D_{1}(x)
$$

$\longrightarrow \quad D_{2}(x)$

The concretization function:

$$
\begin{aligned}
& \gamma(\perp)=\{ \} \\
& \gamma(D)=\{\rho \mid \rho(x) \Delta D(x)\}, \quad \text { for } D \neq \perp \\
& \gamma(\{x \mapsto[3,5], y \mapsto[0,7]\})=\quad\{\{x \mapsto 3, y \mapsto 0\},\{x \mapsto 3, y \mapsto 1\}, \\
& \ldots\{x \mapsto 3, y \mapsto 7\} \\
& \ldots\{x \mapsto 5, y \mapsto 0\} \ldots\{x \mapsto 5, y \mapsto 7\}\}
\end{aligned}
$$

Abstraction of the partial transformation induced by edges.
Recall the edges $k=(u, l, v)$ induce a partial transformation on concrete states:

$$
\llbracket k \rrbracket=\llbracket l \rrbracket: \mathcal{S} \rightarrow \mathcal{S}
$$

Now on our chosen domain \mathbb{D} we define a monotonic abstract transformation:

$$
\llbracket k \rrbracket^{\sharp}=\llbracket l \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}
$$

The abstract transformation should simulate the concrete transformation: if $\quad \rho \Delta a$ and $\llbracket l \rrbracket \rho$ is defined then $\llbracket l \rrbracket \rho \Delta \llbracket l \rrbracket \rrbracket a$.

Abstract transformation for interval analysis.

For concrete operators \square we define monotonic abstract operators $\square \mathbb{}$ such that $x_{1} \quad \Delta a_{1} \wedge \ldots \wedge x_{n} \Delta a_{n} \Longrightarrow \square\left(x_{1}, \ldots, x_{n}\right) \quad \Delta \quad \square^{\sharp}\left(a_{1}, \ldots, a_{n}\right)$
addition: $\quad\left[l_{1}, u_{1}\right] \quad+^{\sharp}\left[l_{2}, u_{2}\right] \quad=\left[l_{1}+l_{2}, u_{1}+u_{2}\right]$.

- $+\infty=\infty$
- $+-\infty=-\infty$
$/ / \infty+-\infty$ is undefined.
substraction:

$$
-^{\sharp} \quad[l, u] \quad=[-u,-l]
$$

Multiplication: $\left[l_{1}, u_{1}\right] \quad * \quad\left[l_{2}, u_{2}\right] \quad=[m, n] \quad$ where

$$
\begin{array}{ll}
m & =l_{1} l_{2} \sqcap l_{1} u_{2} \sqcap u_{1} l_{2} \sqcap u_{1} u_{2} \\
n & =l_{1} l_{2} \sqcup l_{1} u_{2} \sqcup u_{1} l_{2} \sqcup u_{1} u_{2}
\end{array}
$$

Example: $\quad[1,3] \quad *^{\#} \quad[5,8] \quad=[5,24]$

$$
\begin{array}{llll}
{[-1,3]} & *^{\#} & {[5,8]} & =[-8,24] \\
{[-1,3]} & *^{\#} & {[-5,8]} & =[-15,24] \\
{[-1,3]} & *^{\#} & {[-5,-8]} & =[-24,5]
\end{array}
$$

Equality test:
$\left[l_{1}, u_{1}\right]=\#^{\sharp}\left[l_{2}, u_{2}\right]=\left\{\begin{array}{lll}{[1,1]} & \text { if } & l_{1}=u_{1}=l_{2}=u_{2} \\ {[0,0]} & \text { if } & u_{1}<l_{2} \text { or } u_{2}<l_{1} \\ {[0,1]} & \text { otherwise } & \end{array}\right.$

Example:

$$
\begin{array}{llll}
{[7,7]} & ==^{\sharp} & {[7,7]} & =[1,1] \\
{[1,7]} & ==^{\sharp} & {[9,12]} & =[0,0] \\
{[1,7]} & ==^{\sharp} & {[1,7]} & =[0,1]
\end{array}
$$

Inequality test:
$\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]=\left\{\begin{array}{lll}{[1,1]} & \text { if } & u_{1}<l_{2} \\ {[0,0]} & \text { if } & u_{2}<l_{1} \\ {[0,1]} & \text { otherwise } & \end{array}\right.$

Example:

$$
\begin{array}{rccc}
{[1,7]} & <^{\sharp}[9,12] & =[1,1] \\
{[9,12]} & <^{\sharp}[1,7] & =[0,0] \\
{[1,7]} & <^{\sharp}[6,8] & =[0,1]
\end{array}
$$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$
Case e is $n: \quad \llbracket n \rrbracket \rho=n \Delta[n, n]=\llbracket n \rrbracket^{\sharp} D$

Monotonic abstract evaluation of expressions
For $D \neq \perp$,

$$
\begin{aligned}
\llbracket x \rrbracket^{\sharp} D & =D(x) \\
\llbracket n \rrbracket^{\sharp} D & =[n, n] \\
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D & =\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)
\end{aligned}
$$

Fact: $\rho \Delta D$ and $\llbracket e \rrbracket \rho$ is defined $\Longrightarrow \llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$.
Case e is x : \quad since $\rho \Delta D$ hence $\llbracket x \rrbracket \rho=\rho(x) \quad \Delta \quad D(x)=\llbracket x \rrbracket^{\sharp} D$
Case e is $n: \quad \llbracket n \rrbracket \rho=n \Delta[n, n]=\llbracket n \rrbracket^{\sharp} D$
Case e is $\square\left(e_{1}, \ldots, e_{n}\right): \quad$ since each $\llbracket e_{i} \rrbracket \rho \Delta \llbracket e_{i} \rrbracket \rrbracket^{\sharp} D$ hence

$$
\llbracket \square\left(e_{1}, \ldots, e_{n}\right) \rrbracket \rho=\square\left(\llbracket e_{1} \rrbracket \rho, \ldots, \llbracket e_{n} \rrbracket \rho\right)
$$

Δ
$\square^{\sharp}\left(\llbracket e_{1} \rrbracket^{\sharp} D, \ldots, \llbracket e_{n} \rrbracket^{\sharp} D\right)=\llbracket \square^{\sharp}\left(e_{1}, \ldots, e_{n}\right) \rrbracket^{\sharp} D$

Finally, the monotonic abstract transformations induced by edges

$$
\llbracket l \rrbracket^{\sharp} \perp=\perp
$$

For $D \neq \perp, \quad \llbracket ; \sharp \rrbracket^{\sharp} D=D$

$$
\begin{aligned}
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket e \rrbracket^{\sharp} D & = \begin{cases}\perp & \text { if } \llbracket e \rrbracket^{\sharp} D=[0,0] \\
D & \text { otherwise }\end{cases}
\end{aligned}
$$

Finally, the monotonic abstract transformations induced by edges

$$
\begin{aligned}
\text { For } D \neq \perp, & \llbracket l \rrbracket^{\sharp} \perp
\end{aligned}=\perp, \begin{array}{r}
\llbracket ; \rrbracket^{\sharp} D
\end{array}=D .
$$

Next we must check the condition:

$$
\rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1} .
$$

Finally, the monotonic abstract transformations induced by edges

$$
\begin{aligned}
\text { For } D \neq \perp, & \llbracket l \rrbracket^{\sharp} \perp
\end{aligned}=\perp, \begin{array}{r}
\llbracket \rrbracket^{\sharp} D
\end{array}=D .
$$

Next we must check the condition:

$$
\rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1} .
$$

Clearly $D \neq \perp$ here.

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

Case l is $x=e$;

$$
\rho_{1}=\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \text { and } \quad D_{1}=D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\}
$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_{1} \Delta D_{1}$.

To check: $\quad \rho \Delta D \wedge \llbracket l \rrbracket \rho=\rho_{1} \wedge \llbracket l \rrbracket^{\sharp} D=D_{1} \Longrightarrow \rho_{1} \Delta D_{1}$.
Case l is ;

$$
\rho_{1}=\rho \quad \Delta \quad D=D_{1} .
$$

Case l is $x=e$;

$$
\rho_{1}=\rho \oplus\{x \mapsto \llbracket e \rrbracket \rho\} \quad \text { and } \quad D_{1}=D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\}
$$

As $\llbracket e \rrbracket \rho \Delta \llbracket e \rrbracket^{\sharp} D$ hence $\rho_{1} \Delta D_{1}$.
Case e is some condition e
Since the tranformation $\llbracket e \rrbracket \rho$ is defined, hence the expression evaluation $\llbracket e \rrbracket \rho \neq 0$, and $\rho_{1}=\rho$.

Since $\rho \Delta D$, hence the abstract expression evaluation $\llbracket e \rrbracket^{\sharp} D \neq[0,0]$, and $D_{1}=D$.

Recall, for a path $\pi=k_{1} \ldots k_{n}$,

$$
\begin{aligned}
& \llbracket \pi \rrbracket \rho=\left(\llbracket k_{n} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right) \rho \\
& \llbracket \pi \rrbracket^{\sharp} D=\left(\llbracket k_{n} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}\right) D
\end{aligned}
$$

We conclude from above:
if $\rho \Delta D$ and $\llbracket \pi \rrbracket \rho$ is defined then $\llbracket \pi \rrbracket \rho \Delta \llbracket \pi \rrbracket^{\sharp} D$.

