
The set of possible states state of the program is

S = Vars → Z

The evaluation of an arithmetic expression e under state ρ ∈ S is denoted

[[e]] ρ : Z

An edge k = (u, l, v) induces a partial transformation on program states. The

transformation depends only on the label l.

[[k]] ρ = [[l]] ρ

where [[l]] : S → S

[[;]] ρ = ρ;

[[x = e;]] ρ = ρ ⊕ {x 7→ [[e]] ρ} //i.e. ρ modified at point x

[[e1 ≥ e2]] ρ = ρ if [[e1]] ρ ≥ [[e2]] ρ

66



A path π is a sequence of consequetive edges in the CFG.

u0 u1

l2 ln−1

un

l1 ln... un−1

π = k1, . . . , kn where each ki is of the form (ui−1, li, ui).

We write π : u0 →∗ un

The transformation induced by a path is the composition of the

transformations induced by the edges.

[[π]] = [[kn]] ◦ . . . ◦ [[k1]]

Each node can be reached through possibly infinitely many paths, leading to

infinitely many different states at each program point.

We are interested in the set of all such states at each program point.

67



Suppose we know that a set V of states is possible at a node u.

By following an edge k = (u, l, v), a new set of states becomes possible at node

v. This set is denoted [[k]]♯ V = [[l]]♯ V : 2S → 2S .

We define abstract transformation

[[l]]♯ V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

As before, [[k1, . . . , kn]]♯ V = ([[kn]]♯ ◦ . . . ◦ [[k1]]
♯ )V .

At the start node, all states are possible.

For each node v we want to compute the set

V∗[v] =
⋃

{[[π]]♯ S | π : start →∗ v}

68



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

69



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

How to compute the sets V∗[v] in general?

69-a



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

u V∗[u]

0 −∞ < i, j < ∞

1 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 11 ∧ j = 2i−2

2 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i−2

3 i = 0 ∧ −∞ < j < ∞

∨1 ≤ i ≤ 10 ∧ j = 2i

4 i = 11 ∧ j = 20

How to compute the sets V∗[v] in general?

In general they are not computable!

69-b



We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

70



We set up a constraint system.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

The least solution (wrt ⊆) of the constraints is exactly V∗.

70-a



The least solution (wrt ⊆) of the constraints is exactly V∗.

Is this always true?

Does such a constraint system always have a least solution?

Is it computable? Efficiently?

71



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅

V[1] ∅

V[2] ∅

V[3] ∅

V[4] ∅

72



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅

V[2] ∅

V[3] ∅

V[4] ∅

72-a



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅

V[3] ∅

V[4] ∅

72-b



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅ {0} × Z

V[3] ∅

V[4] ∅

72-c



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z

V[2] ∅ {0} × Z

V[3] ∅ {(0, 0)}

V[4] ∅

72-d



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[2] ∅ {0} × Z

V[3] ∅ {(0, 0)}

V[4] ∅

72-e



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[2] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[3] ∅ {(0, 0)}

V[4] ∅

72-f



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[2] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[3] ∅ {(0, 0)} {(0, 0), (1, 2)}

V[4] ∅

72-g



An idea: do iterative computation of reachable states.

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ∅ Z × Z

V[1] ∅ {0} × Z {0} × Z ∪ {(1, 0)}

V[2] ∅ {0} × Z {0} × Z ∪ {(1, 0)} . . .

V[3] ∅ {(0, 0)} {(0, 0), (1, 2)}

V[4] ∅

72-h



Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1 2

3

4 5
stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

73



Problem: too many iterations, infinite loops.

Solution: approximate computation of possible states.

start

0

1 2

3

4 5
stop

i < 0 i ≥ 0

i > 10

i ≤ 10

i > 10

i ≤ 10

i = i + 1; i = i + 1;

0 ∅ Z Z

1 ∅ Z
−

Z

2 ∅ Z
+

Z
+

3 ∅ Z
+

Z
+

4 ∅ Z
−

Z

5 ∅ Z
+

Z
+

Interpretation of our result:

the values of i at node 1 is included in Z

the values of i at node 2 is included in Z
+

This information we obtain is accurate.

73-a



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

74



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering ⊑ on the elements of this domain.

∅ ⊑ Z
− ∅ ⊑ Z

+
Z
− ⊑ Z Z

+ ⊑ Z

Read x ⊑ y as ”y is imprecise information compared to x”.

74-a



In general we have some domain D.

Examples: 2S , 2Z, {∅, Z−, Z+, Z}, the set of intervals over Z.

We require an ordering ⊑ on the elements of this domain.

∅ ⊑ Z
− ∅ ⊑ Z

+
Z
− ⊑ Z Z

+ ⊑ Z

Read x ⊑ y as ”y is imprecise information compared to x”.

We further require operations like least upper bounds.

Z
− ⊔ Z

+ = Z

74-b



A brief discussion of complete lattices

Recall: a set D with relation ⊑ is a partial order if the following conditions

hold for all x, y, z ∈ D.

• Reflexivity: x ⊑ x.

• Antisymmetry: x ⊑ y and y ⊑ x then x = y.

• Transitivity: if x ⊑ y and y ⊑ z then x ⊑ z.

75



An element d ∈ D is called an upper bound of a set X ⊆ D if x ⊑ d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d ⊑ d′ for every upper bound d′ of X

76



An element d ∈ D is called an upper bound of a set X ⊆ D if x ⊑ d for all

x ∈ X.

d ∈ D is called least upper bound of X ⊆ D if

• d is an upper bound of X

• d ⊑ d′ for every upper bound d′ of X

A partial order (D,⊑) is called a complete lattice if every X ⊆ D has a least

upper bound
⊔

X.

We write x ⊔ y for
⊔

{x, y}.

For (2S ,⊆) we have
⊔

X =
⋃

X.

76-a



Some complete lattices.

⊤

⊥
∅

Z
+

Z
−

Z

Z
− = {x ∈ Z | x < 0}

Z
+ = {x ∈ Z | x ≥ 0}

Z × Z
+

Z
+ × Z

−

Z
− × Z

+
Z

+ × Z
+

Z
+ × ZZ × Z

−

Z
− × Z

−

Z
− × Z

∅

Z × Z

77



An infinite complete lattice : (2Z,⊆).

{0} {1} {2}{−1}

{0,−1} {0, 1} {0, 2} {1, 2}

{0, 1, 2}

∅

Z

...

... ...

78



Every complete lattice has

• a top element: ⊤ =
⊔

D

• a bottom element: ⊥ =
⊔

∅

Further every X ⊆ D has a greatest lower bound
d

X.

79



Every complete lattice has

• a top element: ⊤ =
⊔

D

• a bottom element: ⊥ =
⊔

∅

Further every X ⊆ D has a greatest lower bound
d

X.

Proof: exercise.

79-a



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

80



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

80-a



A function f : D1 → D2 is called monotone if:

f(x) ⊑ f(y) whenever x ⊑ y

The function f : Z → Z defined as f(x) = x + 1 is monotone.

Note: (Z,≤) is not a complete lattice.

The transformations induced by the program edges are monotone:

Recall: [[l]]♯ : 2S → 2S

[[l]]♯ V = {[[l]] ρ | ρ ∈ V and [[l]] is defined for ρ}.

Hence if V1 ⊆ V2 then [[l]]♯ V1 ⊆ [[l]]♯ V2.

80-b



Some facts:

If f : D1 → D2 and g : D2 → D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

81



Some facts:

If f : D1 → D2 and g : D2 → D3 are monotone then the composition

g ◦ f : D1 → D3 is monotone.

If D2 is a complete lattice then the set [D1 → D2] of monotone functions

f : D1 → D2 is a complete lattice,

where f ⊑ g iff f(x) ⊑ g(x) for all x ∈ D1.

For F ⊆ [D1 → D2] we have
⊔

F = f with f(x) =
⊔

{g(x) | g ∈ F} .

81-a



For our program analysis problem, we want the least solution of the constraint

system

V[0] ⊇ S (0 is the start node)

V[v] ⊇ [[l]]♯ V[u] for every edge (u, l, v).

We have the domain D = 2S . Choose a variable for each set V[v].

We obtain a constraint system of the form

xi ⊒ fi(x1, . . . , xn) (1 ≤ i ≤ n)

82



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

83



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ [[i = 0;]] V[0]

V[1] ⊇ [[i = i+1;]] V[3]

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

Transforms to ...

83-a



Example

start

stop

1

2

3

4

0

i = 0;

i ≤ 10
i > 10

j = 2 ∗ i;

i = i + 1;

V[0] ⊇ S

V[1] ⊇ ([[i = 0;]] V[0]

∪[[i = i+1;]] V[3])

V[2] ⊇ [[i ≤ 10]] V[1]

V[3] ⊇ [[j = 2∗i;]] V[2]

V[4] ⊇ [[i > 10]] V[1]

84



Since D is a lattice, D
n is also a lattice where

(d1, . . . , dn) ⊑ (d′1, . . . , d
′
n) iff di ⊑ d′i for 1 ≤ i ≤ n

The functions fi : D
n → D are monotone.

Define F : D
n → D

n as

F (y) = (f1(y), . . . , fn(y)) where y = (x1, . . . , xn)

F is also monotone.

We need least solution of y ⊒ F (y).

85



Idea: use iteration

Start with the least element ⊥ and compute the sequence

⊥, F (⊥), F 2(⊥), F 3(⊥), . . ..

Do we always reach the least solution in this way?

86



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥

y ⊥

z ⊥

We have F 2(⊥) = F 3(⊥).

87



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥

y ⊥ ⊥

z ⊥ ⊤

We have F 2(⊥) = F 3(⊥).

87-a



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥ ⊤

y ⊥ ⊥ ⊥

z ⊥ ⊤ ⊤

We have F 2(⊥) = F 3(⊥).

87-b



Example: the complete lattice of Booleans: D = {⊥,⊤}.

Constraint system:

x ⊒ y∨z

y ⊒ x∧y∧z

z ⊒ ⊤

The iteration:

x ⊥ ⊥ ⊤ ⊤

y ⊥ ⊥ ⊥ ⊥

z ⊥ ⊤ ⊤ ⊤

We have F 2(⊥) = F 3(⊥).

87-c



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

88



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

88-a



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

In fact it also the least solution of F (x) ⊑ x.

88-b



Such an iteration produces an ascending chain

⊥ ⊑ F (⊥) ⊑ F 2(⊥) ⊑ F 3(⊥) . . .

Further if F k(⊥) = F k+1(⊥) for some k

then clearly F k(⊥) is some solution of the constraint F (x) ⊑ x.

In fact it also the least solution of F (x) ⊑ x.

Such a k always exists if the lattice is finite.

What in case of infinite lattices?

88-c



start

0

stop

i=0;

i=i+2;1

Constraint system:

V[0] ⊇ Z

V[1] ⊇ {0} ∪ {x+2 | x ∈ V[1]}

The least solution:

V[0] = Z and V[1] = {2n | n ≥ 0}.

Iteration doesn’t terminate:

⊥ F (⊥) F 2(⊥) F 3(⊥)

V[0] ∅ Z Z Z . . .

V[1] ∅ {0} {0, 2} {0, 2, 4}

89



Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D → D has a least

fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that f(x) ⊑ x.

90



Existence of least solutions: Knaster-Tarski

Fact: In a complete lattice D, every monotone function f : D → D has a least

fixpoint a.

Fixpoint: an element x such that f(x) = x.

Prefixpoint: an element x such that f(x) ⊑ x.

Let P = {x ∈ D | f(x) ⊑ x} (the set of prefixpoints).
d

P is the least prefixpoint as well as the least fixpoint of f .

90-a



Example 1: Consider partial order D1 = N with 0 ⊑ 1 ⊑ 2 ⊑ . . ..

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually D1 is not a complete lattice.

91



Example 1: Consider partial order D1 = N with 0 ⊑ 1 ⊑ 2 ⊑ . . ..

The function f(x) = x+1 is monotonic.

However it has no fixpoint.

Actually D1 is not a complete lattice.

Example 2: Now we consider D2 = N ∪ {∞}.

This is a complete lattice.

The function f(x) = x+1 is again monotonic.

The only fixpoint is ∞: ∞+1 = ∞.

91-b



Abstract Interpretation: Cousot, Cousot 1977

We use a suitable complete lattice as the domain of abstract values.

Example: intervals as abstract values:

start

0

1

stop

23

i ≤ 10i > 10

i = 0;

i = i + 2;

I[0] ⊥ [−∞,∞] [−∞,∞] [−∞,∞] [−∞,∞]

I[1] ⊥ [0, 0] [0, 2] [0, 12] [0, 12]

I[2] ⊥ [0, 0] [0, 2] . . . [0, 10] [0, 10]

I[3] ⊥ ⊥ ⊥ [11, 12] [11, 12]

The analysis guarantees e.g. that at node 1 the value of i is always in the

interval [0, 12].

92



We have the set of concrete states S = (Vars → Z).

We choose a complete lattice D of abstract states.

We define an abstraction relation

∆ : S × D

with the condition that

ρ ∆ a ∧ a ⊑ b =⇒ ρ ∆ b

b⊑

∆

ρ

a

∆

The concretization function: γ(a) = {ρ | ρ ∆ a}.

93



Example: For a program on two integer variables, Vars = {x, y}.

The concrete states are from the set S = (Vars → Z) (or equivalently Z
2).

For interval analysis, we choose the complete lattice

DI = (Vars → I)⊥ = (Vars → I) ∪ {⊥}

where I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {∞}, l ≤ u} is the set of intervals.

l1 u1

u2l2

Partial order on I: [l1, u1] ⊑ [l2, u2] iff l1 ≥ l2 and u1 ≤ u2

(As usual, −∞ ≤ n ≤ ∞ for all n ∈ Z.)

94



Partial order on Vars → I: D1 ⊑ D2 iff D1(x) ⊑ D2(x).

Extension to (Vars → I)⊥: ⊥ ⊑ D for all D.

(Vars → I)⊥ is a complete lattice. (Vars → I) is not.

In particular we define [l1, u1] ⊔ [l2, u2] = [l1 ⊓ l2, u1 ⊔ u2].

l2

u1l1

u2

u1 ⊔ u2
l1 ⊓ l2

⊥ represents the “unreachable state”: maps every variable to the “empty

interval”.

95



The abstraction relation:

ρ ∆ D iff D 6= ⊥ and ρ(x) ∆ D(x) for each x.

where n ∆ [l, u] iff l ≤ n ≤ u.

96



The abstraction relation:

ρ ∆ D iff D 6= ⊥ and ρ(x) ∆ D(x) for each x.

where n ∆ [l, u] iff l ≤ n ≤ u.

This satisfies the required condition:

Suppose ρ ∆ D1 and D1 ⊑ D2.

=⇒ D1 6= ⊥ and D2 6= ⊥.

ρ(x) ∆ D1(x) and D1(x) ⊑ D2(x) for each x.

=⇒ ρ(x) ∆ D1(x) for each x.

ρ(x)

D1(x)

D2(x)

.

96-a



The concretization function:

γ(⊥) = {}

γ(D) = {ρ | ρ(x) ∆ D(x)}, for D 6= ⊥

γ({x 7→ [3, 5], y 7→ [0, 7]}) = {{x 7→ 3, y 7→ 0}, {x 7→ 3, y 7→ 1},

. . . {x 7→ 3, y 7→ 7}

. . . {x 7→ 5, y 7→ 0} . . . {x 7→ 5, y 7→ 7}}

97



Abstraction of the partial transformation induced by edges.

Recall the edges k = (u, l, v) induce a partial transformation on concrete states:

[[k]] = [[l]] : S → S

Now on our chosen domain D we define a monotonic abstract transformation:

[[k]]♯ = [[l]]♯ : D → D

The abstract transformation should simulate the concrete transformation:

if ρ ∆ a and [[l]] ρ is defined then [[l]] ρ ∆ [[l]]♯ a.

ρ

a [[k]]♯

[[k]]

∆ ∆

98



Abstract transformation for interval analysis.

For concrete operators � we define monotonic abstract operators �
♯ such that

x1 ∆ a1 ∧ . . . ∧ xn ∆ an =⇒ �(x1, . . . , xn) ∆ �
♯(a1, . . . , an)

addition: [l1, u1] +♯ [l2, u2] = [l1 + l2, u1 + u2].

+ ∞ = ∞

+ −∞ = −∞

// ∞ + −∞ is undefined.

substraction: −♯ [l, u] = [−u,−l]

99



Multiplication: [l1, u1] ∗♯ [l2, u2] = [m,n] where

m = l1l2 ⊓ l1u2 ⊓ u1l2 ⊓ u1u2

n = l1l2 ⊔ l1u2 ⊔ u1l2 ⊔ u1u2

Example: [1, 3] ∗♯ [5, 8] = [5, 24]

[−1, 3] ∗♯ [5, 8] = [−8, 24]

[−1, 3] ∗♯ [−5, 8] = [−15, 24]

[−1, 3] ∗♯ [−5,−8] = [−24, 5]

100



Equality test:

[l1, u1] ==♯ [l2, u2] =



















[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 or u2 < l1

[0, 1] otherwise

Example:

[7, 7] ==♯ [7, 7] = [1, 1]

[1, 7] ==♯ [9, 12] = [0, 0]

[1, 7] ==♯ [1, 7] = [0, 1]

101



Inequality test:

[l1, u1] <♯ [l2, u2] =



















[1, 1] if u1 < l2

[0, 0] if u2 < l1

[0, 1] otherwise

Example:

[1, 7] <♯ [9, 12] = [1, 1]

[9, 12] <♯ [1, 7] = [0, 0]

[1, 7] <♯ [6, 8] = [0, 1]

102



Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]♯ D = D(x)

[[n]]♯ D = [n, n]

[[�(e1, . . . , en)]]♯ D = �
♯([[e1]]

♯ D, . . . , [[en]]♯ D)

103



Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]♯ D = D(x)

[[n]]♯ D = [n, n]

[[�(e1, . . . , en)]]♯ D = �
♯([[e1]]

♯ D, . . . , [[en]]♯ D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]♯ D.

103-a



Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]♯ D = D(x)

[[n]]♯ D = [n, n]

[[�(e1, . . . , en)]]♯ D = �
♯([[e1]]

♯ D, . . . , [[en]]♯ D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]♯ D.

Case e is x: since ρ ∆ D hence [[x]] ρ = ρ(x) ∆ D(x) = [[x]]♯ D

103-b



Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]♯ D = D(x)

[[n]]♯ D = [n, n]

[[�(e1, . . . , en)]]♯ D = �
♯([[e1]]

♯ D, . . . , [[en]]♯ D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]♯ D.

Case e is x: since ρ ∆ D hence [[x]] ρ = ρ(x) ∆ D(x) = [[x]]♯ D

Case e is n: [[n]] ρ = n ∆ [n, n] = [[n]]♯ D

103-c



Monotonic abstract evaluation of expressions

For D 6= ⊥, [[x]]♯ D = D(x)

[[n]]♯ D = [n, n]

[[�(e1, . . . , en)]]♯ D = �
♯([[e1]]

♯ D, . . . , [[en]]♯ D)

Fact: ρ ∆ D and [[e]] ρ is defined =⇒ [[e]] ρ ∆ [[e]]♯ D.

Case e is x: since ρ ∆ D hence [[x]] ρ = ρ(x) ∆ D(x) = [[x]]♯ D

Case e is n: [[n]] ρ = n ∆ [n, n] = [[n]]♯ D

Case e is �(e1, . . . , en) : since each [[ei]] ρ ∆ [[ei]]
♯ D hence

[[�(e1, . . . , en)]] ρ = �([[e1]] ρ, . . . , [[en]] ρ)

∆

�
♯([[e1]]

♯ D, . . . , [[en]]♯ D) = [[�♯(e1, . . . , en)]]♯ D

103-d



Finally, the monotonic abstract transformations induced by edges

[[l]]♯ ⊥ = ⊥

For D 6= ⊥, [[;]]♯ D = D

[[x = e;]]♯ D = D ⊕ {x 7→ [[e]]♯ D}

[[e]]♯ D =







⊥ if [[e]]♯ D = [0, 0]

D otherwise

104



Finally, the monotonic abstract transformations induced by edges

[[l]]♯ ⊥ = ⊥

For D 6= ⊥, [[;]]♯ D = D

[[x = e;]]♯ D = D ⊕ {x 7→ [[e]]♯ D}

[[e]]♯ D =







⊥ if [[e]]♯ D = [0, 0]

D otherwise

Next we must check the condition:

ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]♯ D = D1 =⇒ ρ1 ∆ D1.

104-a



Finally, the monotonic abstract transformations induced by edges

[[l]]♯ ⊥ = ⊥

For D 6= ⊥, [[;]]♯ D = D

[[x = e;]]♯ D = D ⊕ {x 7→ [[e]]♯ D}

[[e]]♯ D =







⊥ if [[e]]♯ D = [0, 0]

D otherwise

Next we must check the condition:

ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]♯ D = D1 =⇒ ρ1 ∆ D1.

Clearly D 6= ⊥ here.

104-b



To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]♯ D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

105



To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]♯ D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]♯ D}

As [[e]] ρ ∆ [[e]]♯ D hence ρ1 ∆ D1.

105-a



To check: ρ ∆ D ∧ [[l]] ρ = ρ1 ∧ [[l]]♯ D = D1 =⇒ ρ1 ∆ D1.

Case l is ;

ρ1 = ρ ∆ D = D1.

Case l is x = e;

ρ1 = ρ ⊕ {x 7→ [[e]] ρ} and D1 = D ⊕ {x 7→ [[e]]♯ D}

As [[e]] ρ ∆ [[e]]♯ D hence ρ1 ∆ D1.

Case e is some condition e

Since the tranformation [[e]] ρ is defined,

hence the expression evaluation [[e]] ρ 6= 0, and ρ1 = ρ.

Since ρ ∆ D,

hence the abstract expression evaluation [[e]]♯ D 6= [0, 0], and D1 = D.

105-b



Recall, for a path π = k1 . . . kn,

[[π]] ρ = ([[kn]] ◦ . . . ◦ [[k1]] )ρ

[[π]]♯ D = ([[kn]]♯ ◦ . . . ◦ [[k1]]
♯ )D

We conclude from above:

if ρ ∆ D and [[π]] ρ is defined then [[π]] ρ ∆ [[π]]♯ D.

ρ

∆

D

∆ ∆ ∆ ∆ ∆

[[k2]]
♯

[[kn]][[k3]][[k2]][[k1]]

[[k3]]
♯ [[kn]]♯[[k1]]

♯

...

106


