Formal semantics
We now need to define how processes execute.

For example we would like
send.(M); P | recv.(z); Q — P | Q[M /x]

where 7 denotes a silent action (internal communication).

Let fn(M) and fn(P) be the set of free names in term M and process P

respectively.

Let fu(M) and fv(P) be the set of free variables in term M and process P

respectively.

Closed processes are processes without any free variables.

169

Let P 2 new ¢ new K recvg(z); case o of {y}gr : sendg({y}x, 2, ¢): halt.
We have
fn(sendq{{y}tx, 2, c);halt) = {c,d, K’}

fu(senda({y}t k., 2, ¢); halt) = {y, 2}
fn(case x of {y} g : sendg{{y} K, z,¢); halt) = {¢,d, K, K"}
fu(case x of {y}xrr :sendy({y}k, 2, ¢); halt) = {z, 2}
fn(P)={d, K"}

(P) ={z}

{yrk) ={K}
fo({ytr) ={y}

170

First we define reduction relation > on closed processes:

repeat P

check (M == M); P

let (z,y) = (M,N); P

case 0 of 0: P, succ (z) : @

case succ (M) of 0: P, succ (x): Q
case {M}n of {x}n: P

> P | repeat P
> P

> PM/x, N /y]
> P

> QM /x]

> P|M /x|

171

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.
check (0 == succ (0); P (comparison fails).

let (x,y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (z) : @ (not an integer)

case (M, N) of {x,y}k : P (not an encrypted message)

case {M, N}k of {x,y}x : P where K # K’

172

When these rules cannot be applied, it means that the process cannot be

simplified.

The following processes cannot be simplified, hence cannot be executed further.
check (0 == succ (0); P (comparison fails).

let (z,y) = 0; P (unpairing fails)

case (M, N) of 0: P, succ (z) : @ (not an integer)

case (M, N) of {x,y}k : P (not an encrypted message)

case {M, N}k of {x,y}x : P where K # K’

This is also based on the perfect cryptography assumption: distinct terms

represent distinct messages.

172-a

A barb (is either
e a name n (representing input on channel n), or

e a co-name 7 (representing output on channel n)

An action is either
e a barb (representing input or output to the outside world), or

e 7 (representing a silent action i.e. internal communication)

We write P —— () to mean that P makes action a after which Q is the

remaining process that is left to be executed.

173

Commitment relation Consider again send.(M); P | recv.(x); Q

174

Commitment relation Consider again send.(M); P | recv.(x); Q

The first subprocess makes an output action on channel c.

We will represent it as send.(M); P — (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.

174-a

Commitment relation Consider again send.(M); P | recv.(x); Q)
The first subprocess makes an output action on channel c.

We will represent it as send.(M); P — (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.
The second subprocess makes an input action on channel c.
We will represent it as recv.(z); Q — (2)Q.

()@ is called an abstraction:it represents a commitment to input some z after
which () will be executed.

174-b

Commitment relation Consider again send.(M); P | recv.(x); Q)
The first subprocess makes an output action on channel c.

We will represent it as send.(M); P — (M)P.

(M) P is called a concretion: it represents a commitment to output message M

after which P will be executed.
The second subprocess makes an input action on channel c.
We will represent it as recv.(z); Q — (2)Q.

()@ is called an abstraction:it represents a commitment to input some z after
which () will be executed.

Abstractions and concretions can be combined:

(M)P Q (2)Q = P | QM /x|

174-c

Formally an abstraction F'is of the form
(1, .. 28) P

where £ > 0 and P is a process.

A concretion C' is of the form
(new ny,...,ny)(My,..., M)P

where nq,...,n; are names, [,k > 0 and P is a process.

175

Formally an abstraction F'is of the form
(1, .. 28) P

where £ > 0 and P is a process.

A concretion C' is of the form
(new ny,...,ny)(My,..., M)P

where nq,...,n; are names, [,k > 0 and P is a process.

For F' = (z1,...,2;)P and C' = (new ny,...,n){(My, ..., Mp)Q
with {n1,...,m} N fn(P) = () we define interaction of F' and C as

F @Q C £ new nj;...new ny; (P|Mi/x1, ..., Mg/xg] | Q)
C @QF £ new ny;...new ng; (Q | P[My/xq, ..., M/ x))

175-a

An agent A is an abstraction, concretion or a process.
. . . 8% .
We write the commitment relation as P — A where P is a closed process, A

is a closed agent (fv(A) =) and « is an action.

176

An agent A is an abstraction, concretion or a process.
. . . 8% .
We write the commitment relation as P — A where P is a closed process, A

is a closed agent (fv(A) =) and « is an action.

send,, (M7, ..., M); P (new)(Mq,..., M;)P

176-a

An agent A is an abstraction, concretion or a process.
. . . 8% .
We write the commitment relation as P — A where P is a closed process, A

is a closed agent (fv(A) =) and « is an action.

send,, (M7, ..., M); P (new)(Mq,..., M;)P

recVon (21, ..., 25); P — (21,...,25) P

176-b

An agent A is an abstraction, concretion or a process.
. . . 8% .
We write the commitment relation as P — A where P is a closed process, A

is a closed agent (fv(A) =) and « is an action.

send,, (M7, ..., M); P (new)(Mq,..., M;)P

recVon (21, ..., 25); P — (21,...,25) P

Pr™rFr Q2 C
PlQ->5FacC

176-c

An agent A is an abstraction, concretion or a process.
. . . 8% .
We write the commitment relation as P — A where P is a closed process, A

is a closed agent (fv(A) =) and « is an action.

send,, (M7, ..., M); P (new)(Mq,..., M;)P
recVon (21, ..., 25); P — (21,...,25) P

Pr™rFr Q2 C
PlQ->5FacC

Pr™mc 9™ F
PlQ->5CaQF

176-d

Example

Define
P = send.(succ (0)); halt
Q = recv.(x);case z of 0 : halt, succ (y) : (sendg{y); halt)

From our rules we have

177

Example

Define
P = send..(succ (0)); halt
Q = recv.(x);case z of 0 : halt, succ (y) : (sendg{y); halt)

From our rules we have

P = (succ (0))halt
((Mq, ..., My)P'" denotes (new)(My, ..., My)P')

177-a

Example

Define
P = send..(succ (0)); halt
Q = recv.(x);case z of 0 : halt, succ (y) : (sendg{y); halt)

From our rules we have

P = (succ (0))halt
((Mq, ..., My)P'" denotes (new)(My, ..., My)P')

Q — (x)case x of 0 : halt, succ (y) : (sendy(y); halt)

177-b

Example

Define
P = send..(succ (0)); halt
Q = recv.(x);case z of 0 : halt, succ (y) : (sendg{y); halt)

From our rules we have

P = (succ (0))halt
((My,..., M) P’ denotes (new)(Mi, ..., My)P')
Q — (x)case x of 0 : halt, succ (y) : (sendy(y); halt)
P| @ — halt|case succ (0) of 0: halt, succ (y) : (sendq(y); halt)

177-c

Example

Define
P = send..(succ (0)); halt
Q = recv.(x);case z of 0 : halt, succ (y) : (sendg{y); halt)

From our rules we have

P = (succ (0))halt
((My,..., M) P’ denotes (new)(Mi, ..., My)P')
Q — (x)case x of 0 : halt, succ (y) : (sendy(y); halt)
P| @ — halt|case succ (0) of 0: halt, succ (y) : (sendq(y); halt)

4, (0)(halt | halt) using the following rules. ..

177-d

P>Q Q-—=A
P A

P2 A Q- A
PlQ-5A4|Q P|lQ-P|A

where

P1‘(xla“ka)PQé(xlwﬂaxk)(Pl’PQ)

P1 | (new ny, ... ,nk)<M1,. .. ,MZ>P2 = (new ny, ... ,nk)<M1,. .. ,Ml>(P1 | P2)

provided that x1,...,xx ¢ fo(Py) and ny,...,ng ¢ fn(Pr)

178

For the previous example we have:
case succ (0) of 0 : halt, succ (y) : (sendgq(y); halt) > send;(0); halt

and -
sendy(0); halt % (0)halt
hence B
case succ (0) of 0 : halt, succ (y) : (sendy(y); halt) <, (0)halt
hence

halt | case succ (0) of 0 : halt, succ (y) : (sendg(y); halt) %, halt | (O)halt
= (0)(halt | halt)

179

Consider P £ (recv.(x); P) | new ¢; (send.(0); P | recv.(x); P3)
We would like P — (recv.(z); P) | new ¢; (P, | P3[0/x])
but not P —— Pi[0/x] | new n; (P, | recv.(x); Ps3)

180

Consider P £ (recv.(x); P) | new ¢; (send.(0); P | recv.(x); P3)
We would like P — (recv.(z); P) | new ¢; (P, | P3[0/x])
but not P —— Pi[0/x] | new n; (P, | recv.(x); Ps3)

Hence we have the rule

P A a¢{nmn)

o
new n; P — new n; A

where

(new m)(z1,...,25)P = (x1,...,z5)new m; P

(new m)(new myq,...,my)(Mq,...,M;)P = (new m,mq,...,mg)(Mi,..., M;)P

provided that m ¢ {my,...,my}

180-a

We have send.(0); P, —— (0) P,

and recv.(x); P3 — () P;

hence send.(0); Ps | recve(x); Ps — (0)Py Q (2)P3 = P, | P3]0/x]
Since 7 ¢ {¢, c}

hence new ¢; (send.(0); Py | recve(x); P3) — new c; (P | P3[0/x])

Hence (recv.(x); P1) | new c; (send.(0); P» | recv.(x); P3)

T

— (recve(z); Pr) | new c; (P | P3[0/x])

181

Consider P £ (new K;send.(K);halt) | (recv.(z);sendq(z); halt)

We have send.(K); halt <, (new)(K)halt

hence new K;send.(K); halt == new K; (new)(K)halt = (new K)(K)halt

Also recv,(z);sendg(z); halt = (z)sendq(x); halt

Hence
P ' (new K)(K)halt @ (x)sendg(z);halt = (new K)(halt | send(K);halt)

182

Equivalence on processes

A test is of the form (Q, 3) where () is a closed process and (3 is a barb.

A process P passes the test (Q, 3) iff

G
for some n > 0, some processes (01, ..., H, and some agent A.

() is the "environment” and we test whether the process together with the

environment inputs or outputs on a particular channel.

Testing preorder Py C Ps iff for every test (Q, 3), if P passes (@, 3) then P,
passes (@, 3).

Testing equivalence P, ~ Py ifft P C P, and P, C P.

183

Secrecy

Consider process P with only free variable .

We will consider x as secret if for all terms M, M’ we have P[M /x| ~ P[M'/x].
I.e. an observer cannot detect any changes in the value of x.

Example Consider P £ send.(z); halt.

r is being sent out on a public channel. Consider test (Q,d) where

environment () = recv.(x); check (x == 0);send4(0); halt.

We have P[0/z] | Q = halt | sendg(0); halt % (0)(halt | halt).
Hence P|0/x] passes the test. However P|[succ (0)/x] fails the test.

Hence P does not preserve secrecy of .

184

