Formal semantics

We now need to define how processes execute.

For example we would like

$$
\operatorname{send}_{c}\langle M\rangle ; P\left|\operatorname{recv}_{c}(x) ; Q \xrightarrow{\tau} P\right| Q[M / x]
$$

where τ denotes a silent action (internal communication).
Let $f n(M)$ and $f n(P)$ be the set of free names in term M and process P respectively.

Let $f v(M)$ and $f v(P)$ be the set of free variables in term M and process P respectively.

Closed processes are processes without any free variables.

Let $P \triangleq$ new c; new $K ; \operatorname{recv}_{d}(x)$; case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle$; halt.
We have
$f n\left(\operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;\right.$ halt $)=\{c, d, K\}$
$f v\left(\operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;\right.$ halt $)=\{y, z\}$
$f n\left(\right.$ case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;$ halt $)=\left\{c, d, K, K^{\prime}\right\}$
$f v\left(\right.$ case x of $\{y\}_{K^{\prime}}: \operatorname{send}_{d}\left\langle\{y\}_{K}, z, c\right\rangle ;$ halt $)=\{x, z\}$
$f n(P)=\left\{d, K^{\prime}\right\}$
$f v(P)=\{z\}$
$f n\left(\{y\}_{K}\right)=\{K\}$
$f v\left(\{y\}_{K}\right)=\{y\}$

First we define reduction relation $>$ on closed processes:

repeat P	$>P \mid$ repeat P
check $(M==M) ; P$	$>P$
let $(x, y)=(M, N) ; P$	$>P[M / x, N / y]$
case 0 of $0: P, \operatorname{succ}(x): Q$	$>P$
case succ (M) of $0: P, \operatorname{succ}(x): Q$	$>Q[M / x]$
case $\{M\}_{N}$ of $\{x\}_{N}: P$	$>P[M / x]$

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further. check ($0==\operatorname{succ}(0) ; P$ (comparison fails).
let $(x, y)=0 ; P$ (unpairing fails)
case (M, N) of $0: P, \operatorname{succ}(x): Q($ not an integer $)$
case (M, N) of $\{x, y\}_{K}: P$ (not an encrypted message)
case $\{M, N\}_{K^{\prime}}$ of $\{x, y\}_{K}: P$ where $K \neq K^{\prime}$

When these rules cannot be applied, it means that the process cannot be simplified.

The following processes cannot be simplified, hence cannot be executed further. check ($0==\operatorname{succ}(0) ; P$ (comparison fails).
let $(x, y)=0 ; P$ (unpairing fails)
case (M, N) of $0: P, \operatorname{succ}(x): Q$ (not an integer)
case (M, N) of $\{x, y\}_{K}: P$ (not an encrypted message)
case $\{M, N\}_{K^{\prime}}$ of $\{x, y\}_{K}: P$ where $K \neq K^{\prime}$
This is also based on the perfect cryptography assumption: distinct terms represent distinct messages.

A barb β is either

- a name n (representing input on channel n), or
- a co-name \bar{n} (representing output on channel n)

An action is either

- a barb (representing input or output to the outside world), or
- τ (representing a silent action i.e. internal communication)

We write $P \xrightarrow{\alpha} Q$ to mean that P makes action α after which Q is the remaining process that is left to be executed.

Commitment relation Consider again $\operatorname{send}_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$

Commitment relation Consider again $\operatorname{send}_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$

The first subprocess makes an output action on channel c.
We will represent it as $\operatorname{send}_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

Commitment relation Consider again send ${ }_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$
The first subprocess makes an output action on channel c.
We will represent it as send ${ }_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.
We will represent it as $\operatorname{recv}_{c}(x) ; Q \xrightarrow{c}(x) Q$.
$(x) Q$ is called an abstraction:it represents a commitment to input some x after which Q will be executed.

Commitment relation Consider again send ${ }_{c}\langle M\rangle ; P \mid \operatorname{recv}_{c}(x) ; Q$
The first subprocess makes an output action on channel c.
We will represent it as send ${ }_{c}\langle M\rangle ; P \xrightarrow{\bar{c}}\langle M\rangle P$.
$\langle M\rangle P$ is called a concretion: it represents a commitment to output message M after which P will be executed.

The second subprocess makes an input action on channel c.
We will represent it as $\operatorname{recv}_{c}(x) ; Q \xrightarrow{c}(x) Q$.
$(x) Q$ is called an abstraction:it represents a commitment to input some x after which Q will be executed.

Abstractions and concretions can be combined:
$\langle M\rangle P @(x) Q=P \mid Q[M / x]$

Formally an abstraction F is of the form

$$
\left(x_{1}, \ldots, x_{k}\right) P
$$

where $k \geq 0$ and P is a process.
A concretion C is of the form

$$
\left(\text { new } n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P
$$

where n_{1}, \ldots, n_{l} are names, $l, k \geq 0$ and P is a process.

Formally an abstraction F is of the form

$$
\left(x_{1}, \ldots, x_{k}\right) P
$$

where $k \geq 0$ and P is a process.

A concretion C is of the form

$$
\left(\text { new } n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P
$$

where n_{1}, \ldots, n_{l} are names, $l, k \geq 0$ and P is a process.
For $F \triangleq\left(x_{1}, \ldots, x_{k}\right) P$ and $C \triangleq\left(\right.$ new $\left.n_{1}, \ldots, n_{l}\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle Q$ with $\left\{n_{1}, \ldots, n_{l}\right\} \cap f n(P)=\emptyset$ we define interaction of F and C as

$$
\begin{aligned}
& F @ C \triangleq \text { new } n_{1} ; \ldots \text { new } n_{l} ;\left(P\left[M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right] \mid Q\right) \\
& C @ F \triangleq \text { new } n_{1} ; \ldots \text { new } n_{l} ;\left(Q \mid P\left[M_{1} / x_{1}, \ldots, M_{k} / x_{k}\right]\right)
\end{aligned}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.
$\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}($ new $)\left\langle M_{1}, \ldots, M_{k}\right\rangle P$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P
\end{gathered}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P \\
\frac{P \xrightarrow{m} F \quad Q \xrightarrow{\bar{m}} C}{P \mid Q \xrightarrow{\tau} F @ C}
\end{gathered}
$$

An agent A is an abstraction, concretion or a process.
We write the commitment relation as $P \xrightarrow{\alpha} A$ where P is a closed process, A is a closed agent $(f v(A)=\emptyset)$ and α is an action.

$$
\begin{gathered}
\operatorname{send}_{m}\left\langle M_{1}, \ldots, M_{k}\right\rangle ; P \xrightarrow{\bar{m}}(\text { new })\left\langle M_{1}, \ldots, M_{k}\right\rangle P \\
\operatorname{recv}_{m}\left(x_{1}, \ldots, x_{k}\right) ; P \xrightarrow{m}\left(x_{1}, \ldots, x_{k}\right) P \\
\xrightarrow{P \mid Q \xrightarrow{m} F Q \xrightarrow{\bar{m}} C} C \\
\xrightarrow{P \mid Q \xrightarrow{\bar{m}} C \text { @ } F}+
\end{gathered}
$$

Example
Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x)$; case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle\right.$; halt)
From our rules we have

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have
$P \quad \xrightarrow{\bar{c}}\langle$ succ (0) \rangle halt

$$
\left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right)
$$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, $\operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have
$P \quad \xrightarrow{\bar{c}}\langle$ succ (0) \rangle halt $\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right.$ denotes (new) $\left.\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right)$
$Q \quad \xrightarrow{c}(x)$ case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle\right.$; halt $)$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x)$; case x of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have

$$
\begin{array}{cl}
P & \xrightarrow{\bar{c}}\langle\text { succ }(0)\rangle \text { halt } \\
& \left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right) \\
Q & \xrightarrow{c}(x) \text { case } x \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right) \\
P \mid Q & \xrightarrow{\tau} \text { halt } \mid \text { case succ }(0) \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right)
\end{array}
$$

Example

Define
$P \triangleq \operatorname{send}_{c}\langle\operatorname{succ}(0)\rangle ;$ halt
$Q \triangleq \operatorname{recv}_{c}(x) ;$ case x of 0 : halt, $\operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)$
From our rules we have

$$
\begin{aligned}
P & \xrightarrow{\bar{c}}\langle\text { succ }(0)\rangle \text { halt } \\
& \left.\left(\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime} \text { denotes (new }\right)\left\langle M_{1}, \ldots, M_{k}\right\rangle P^{\prime}\right) \\
Q & \xrightarrow{c}(x) \text { case } x \text { of } 0: \text { halt, succ }(y):\left(\operatorname{send}_{d}\langle y\rangle ; \text { halt }\right) \\
P \mid Q & \xrightarrow{\tau} \text { halt } \mid \text { case succ }(0) \text { of } 0: \text { halt, succ }(y):\left(\text { send }_{d}\langle y\rangle ; \text { halt }\right) \\
& \xrightarrow{\bar{d}}\langle 0\rangle(\text { halt } \mid \text { halt } \quad \text { using the following rules... }
\end{aligned}
$$

$$
\begin{gathered}
\frac{P>Q \quad Q \xrightarrow{\alpha} A}{P \xrightarrow{\alpha} A} \\
\frac{P \xrightarrow{\alpha} A}{P|Q \xrightarrow{\alpha} A| Q} \quad \frac{Q \xrightarrow{\alpha} A}{P|Q \xrightarrow{\alpha} P| A}
\end{gathered}
$$

where

$$
P_{1} \mid\left(x_{1}, \ldots, x_{k}\right) P_{2} \triangleq\left(x_{1}, \ldots, x_{k}\right)\left(P_{1} \mid P_{2}\right)
$$

$$
P_{1} \mid\left(\text { new } n_{1}, \ldots, n_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P_{2} \triangleq\left(\text { new } n_{1}, \ldots, n_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle\left(P_{1} \mid P_{2}\right)
$$

provided that $x_{1}, \ldots, x_{k} \notin f v\left(P_{1}\right)$ and $n_{1}, \ldots, n_{k} \notin f n\left(P_{1}\right)$

For the previous example we have: case succ (0) of 0 : halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $)>\operatorname{send}_{d}\langle 0\rangle$; halt
and

$$
\operatorname{send}_{d}\langle 0\rangle ; \text { halt } \xrightarrow{\bar{d}}\langle 0\rangle \text { halt }
$$

hence

$$
\text { case succ }(0) \text { of } 0: \text { halt, } \operatorname{succ}(y):\left(\operatorname{send}_{d}\langle y\rangle \text {; halt }\right) \xrightarrow{\bar{d}}\langle 0\rangle \text { halt }
$$

hence
halt | case succ (0) of $0:$ halt, succ $(y):\left(\operatorname{send}_{d}\langle y\rangle ;\right.$ halt $) \xrightarrow{\bar{d}}$ halt $\mid\langle 0\rangle$ halt

$$
=\langle 0\rangle \text { (halt } \mid \text { halt })
$$

Consider $P \triangleq\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
We would like $P \xrightarrow{\tau}\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$
but not $P \xrightarrow{\tau} P_{1}[0 / x] \mid$ new $n ;\left(P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$

Consider $P \triangleq\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
We would like $P \xrightarrow{\tau}\left(\operatorname{rec}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$
but not $P \xrightarrow{\tau} P_{1}[0 / x] \mid$ new $n ;\left(P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$
Hence we have the rule

$$
\begin{gathered}
P \xrightarrow{\alpha} A \quad \alpha \notin\{n, \bar{n}\} \\
\hline \text { new } n ; P \xrightarrow{\alpha} \text { new } n ; A \\
\hline
\end{gathered}
$$

where

$$
(\text { new } m)\left(x_{1}, \ldots, x_{k}\right) P \triangleq\left(x_{1}, \ldots, x_{k}\right) \text { new } m ; P
$$

$\left(\right.$ new m)(new $\left.m_{1}, \ldots, m_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P \triangleq\left(\right.$ new $\left.m, m_{1}, \ldots, m_{k}\right)\left\langle M_{1}, \ldots, M_{l}\right\rangle P$
provided that $m \notin\left\{m_{1}, \ldots, m_{k}\right\}$

We have send ${ }_{c}\langle 0\rangle ; P_{2} \xrightarrow{\bar{c}}\langle 0\rangle P_{2}$
and $\operatorname{rec}_{c}(x) ; P_{3} \xrightarrow{c}(x) P_{3}$
hence $\operatorname{send}_{c}\langle 0\rangle ; P_{2}\left|\operatorname{recv}_{c}(x) ; P_{3} \xrightarrow{\tau}\langle 0\rangle P_{2} @(x) P_{3}=P_{2}\right| P_{3}[0 / x]$

Since $\tau \notin\{\bar{c}, c\}$
hence new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right) \xrightarrow{\tau}$ new $c ;\left(P_{2} \mid P_{3}[0 / x]\right)$

Hence $\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid$ new $c ;\left(\operatorname{send}_{c}\langle 0\rangle ; P_{2} \mid \operatorname{recv}_{c}(x) ; P_{3}\right)$

$$
\xrightarrow{\tau}\left(\operatorname{recv}_{c}(x) ; P_{1}\right) \mid \text { new } c ;\left(P_{2} \mid P_{3}[0 / x]\right)
$$

Consider $P \triangleq\left(\right.$ new $K ; \operatorname{send}_{c}\langle K\rangle ;$ halt $) \mid\left(\operatorname{recv}_{c}(x) ; \operatorname{send}_{d}\langle x\rangle ;\right.$ halt $)$

We have send ${ }_{c}\langle K\rangle$; halt $\xrightarrow{\bar{c}}$ (new $)\langle K\rangle$ halt
hence new $K ; \operatorname{send}_{c}\langle K\rangle ;$ halt $\xrightarrow{\bar{c}}$ new $K ;($ new $)\langle K\rangle$ halt $=($ new $K)\langle K\rangle$ halt

Also recv ${ }_{c}(x) ; \operatorname{send}_{d}\langle x\rangle ;$ halt $\xrightarrow{c}(x)$ send $_{d}\langle x\rangle ;$ halt

Hence
$P \xrightarrow{\tau}($ new $K)\langle K\rangle$ halt @ $(x) \operatorname{send}_{d}\langle x\rangle ;$ halt $=($ new $K)\left(\right.$ halt $\mid \operatorname{send}_{d}\langle K\rangle ;$ halt $)$

Equivalence on processes

A test is of the form (Q, β) where Q is a closed process and β is a barb.

A process P passes the test (Q, β) iff
$(P \mid Q) \xrightarrow{\tau} Q_{1} \ldots \xrightarrow{\tau} Q_{n} \xrightarrow{\beta} A$
for some $n \geq 0$, some processes Q_{1}, \ldots, Q_{n} and some agent A.
Q is the "environment" and we test whether the process together with the environment inputs or outputs on a particular channel.

Testing preorder $P_{1} \sqsubseteq P_{2}$ iff for every test (Q, β), if P_{1} passes (Q, β) then P_{2} passes (Q, β).

Testing equivalence $P_{1} \simeq P_{2}$ iff $P_{1} \sqsubseteq P_{2}$ and $P_{2} \sqsubseteq P_{1}$.

Secrecy

Consider process P with only free variable x.
We will consider x as secret if for all terms M, M^{\prime} we have $P[M / x] \simeq P\left[M^{\prime} / x\right]$.
I.e. an observer cannot detect any changes in the value of x.

Example Consider $P \triangleq \operatorname{send}_{c}\langle x\rangle$; halt.
x is being sent out on a public channel. Consider test (Q, \bar{d}) where environment $Q \triangleq \operatorname{recv}_{c}(x)$; check ($x==0$); send ${ }_{d}\langle 0\rangle$; halt.
We have $P[0 / x] \mid Q \xrightarrow{\tau}$ halt $\mid \operatorname{send}_{d}\langle 0\rangle$; halt $\xrightarrow{\bar{d}}\langle 0\rangle$ (halt \mid halt).
Hence $P[0 / x]$ passes the test. However $P[\operatorname{succ}(0) / x]$ fails the test.
Hence P does not preserve secrecy of x.

