
The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

185

The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

• The secret x should not be leaked ...

−→ This process is insecure: sendc〈x〉; halt

185-a

The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

• The secret x should not be leaked ...

−→ This process is insecure: sendc〈x〉; halt

• ... and even any partial information about x should not be leaked.

−→ This process is insecure: sendc〈{0}x〉; halt

185-b

P (x) , sendc〈{0}x〉; halt

186

P (x) , sendc〈{0}x〉; halt

• Assuming perfect cryptography, one cannot compute x from {0}x.

186-a

P (x) , sendc〈{0}x〉; halt

• Assuming perfect cryptography, one cannot compute x from {0}x.

• But one can get partial information about x.

For example, one can find out whether x is 0 or not, by using the property:

x = 0 iff {0}x = {0}0

186-b

P (x) , sendc〈{0}x〉; halt

• Assuming perfect cryptography, one cannot compute x from {0}x.

• But one can get partial information about x.

For example, one can find out whether x is 0 or not, by using the property:

x = 0 iff {0}x = {0}0

−→ P (x) does not preserve the secrecy of x.

186-c

P (x) , sendc〈{0}x〉; halt

In spi-calculus terminology, we consider the test (Q, d), where

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

187

P (x) , sendc〈{0}x〉; halt

In spi-calculus terminology, we consider the test (Q, d), where

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

We show that P (0) 6≃ P (succ (0)).

187-a

P (x) , sendc〈{0}x〉; halt

In spi-calculus terminology, we consider the test (Q, d), where

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

We show that P (0) 6≃ P (succ (0)).

P (0)
c

−→ 〈{0}0〉halt and Q
c

−→ (y)Q1(y)

187-b

P (x) , sendc〈{0}x〉; halt

In spi-calculus terminology, we consider the test (Q, d), where

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

We show that P (0) 6≃ P (succ (0)).

P (0)
c

−→ 〈{0}0〉halt and Q
c

−→ (y)Q1(y)

P (0) | Q
τ

−→ c〈{0}0〉halt @ (y)Q1(y)

187-c

P (x) , sendc〈{0}x〉; halt

In spi-calculus terminology, we consider the test (Q, d), where

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

We show that P (0) 6≃ P (succ (0)).

P (0)
c

−→ 〈{0}0〉halt and Q
c

−→ (y)Q1(y)

P (0) | Q
τ

−→ c〈{0}0〉halt @ (y)Q1(y)

= halt | Q1({0}0)

187-d

P (x) , sendc〈{0}x〉; halt

Q , recvc(y);Q1(y) Q1(y) , check (y == {0}0);Q2 Q2 , sendd〈0〉; halt

Q1({0}0) > Q2

d
−→ 〈0〉halt

Hence Q1({0}0)
d

−→ 〈0〉halt

Hence
halt | Q1({0}0)

d
−→ halt | 〈0〉halt

= 〈0〉(halt | halt)

Hence P (0) passes the test (Q, d).

And we can check that P (succ (0)) does not pass the test (Q, d).

188

Similarly the following challenge response step does not preserve secrecy of Kab

in the spi-calculus model, although the key Kab cannot be computed by an

attacker.

A −→ B : Na

B −→ A : {Na}Kab

One session of the protocol can be represented by the process

new K; (new N ; sendc〈N〉; halt | recvc(x); sendc〈{x}K〉; halt)

Intuitively, an attacker can send send a desired message in place of Na and

then get partial information about the secret key as in the previous example.

189

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

190

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure.

190-a

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure. How to prove it?

190-b

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure. How to prove it?

Consider arbitrary terms M1 and M2. We show that:

if P1(M1) passes some test (Q,β) then P1(M2) also passes the test (Q,β)

190-c

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure. How to prove it?

Consider arbitrary terms M1 and M2. We show that:

if P1(M1) passes some test (Q,β) then P1(M2) also passes the test (Q,β)

For this we show that for all n ≥ 0 and for all R, if P1(M1) | R can make a

sequence of actions β1, . . . , βn then P1(M2) | R can also do so.

Note: we must have βi = τ for i ≤ n − 1.

190-d

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure. How to prove it?

Consider arbitrary terms M1 and M2. We show that:

if P1(M1) passes some test (Q,β) then P1(M2) also passes the test (Q,β)

For this we show that for all n ≥ 0 and for all R, if P1(M1) | R can make a

sequence of actions β1, . . . , βn then P1(M2) | R can also do so.

Note: we must have βi = τ for i ≤ n − 1.

By induction on n.

190-e

Another example: P1(x) , new K; sendc〈{x}K〉; halt.

The protocol is secure. How to prove it?

Consider arbitrary terms M1 and M2. We show that:

if P1(M1) passes some test (Q,β) then P1(M2) also passes the test (Q,β)

For this we show that for all n ≥ 0 and for all R, if P1(M1) | R can make a

sequence of actions β1, . . . , βn then P1(M2) | R can also do so.

Note: we must have βi = τ for i ≤ n − 1.

By induction on n. For n = 0 there is nothing is prove.

190-f

P1(x) , new K; sendc〈{x}K〉; halt

Case 1: the left component makes an action.

P1(M1) | R
c

−→ (new K)〈{M1}K〉(halt | R)

191

P1(x) , new K; sendc〈{x}K〉; halt

Case 1: the left component makes an action.

P1(M1) | R
c

−→ (new K)〈{M1}K〉(halt | R)

Then we also have

P1(M2) | R
c

−→ (new K)〈{M2}K〉(halt | R)

No further transitions are possible in either case. Hence we are done.

191-a

Case 2: the right component R is a process and makes an action.

R
β1

−→ B so that P1(M1) | R
β1

−→ P1(M1) | B

and P1(M1) | B makes a sequence of actions β2, . . . , βn.

192

Case 2: the right component R is a process and makes an action.

R
β1

−→ B so that P1(M1) | R
β1

−→ P1(M1) | B

and P1(M1) | B makes a sequence of actions β2, . . . , βn.

Then we also have P1(M2) | R
β1

−→ P1(M2) | B

and by induction hypothesis, P1(M2) | B makes a sequence of actions

β2, . . . , βn.

192-a

P1(x) , new K; sendc〈{x}K〉; halt

Case 3: the two components communicate over channel c.

P1(M1)
c

−→ (new K)〈{M1}K〉halt

and R
c

−→ (y)R′

so that P1(M1) | R
τ

−→ new K; (halt | R′({M1}K))

and new K; (halt | R′({M1}K)) makes the sequence of actions β2, . . . , βn.

193

P1(x) , new K; sendc〈{x}K〉; halt

Case 3: the two components communicate over channel c.

P1(M1)
c

−→ (new K)〈{M1}K〉halt

and R
c

−→ (y)R′

so that P1(M1) | R
τ

−→ new K; (halt | R′({M1}K))

and new K; (halt | R′({M1}K)) makes the sequence of actions β2, . . . , βn.

Then we also have

P1(M2)
c

−→ (new K)〈{M1}K〉halt

P1(M2) | R
τ

−→ new K; (halt | R′({M2}K))

193-a

P1(x) , new K; sendc〈{x}K〉; halt

Case 3: the two components communicate over channel c.

P1(M1)
c

−→ (new K)〈{M1}K〉halt

and R
c

−→ (y)R′

so that P1(M1) | R
τ

−→ new K; (halt | R′({M1}K))

and new K; (halt | R′({M1}K)) makes the sequence of actions β2, . . . , βn.

Then we also have

P1(M2)
c

−→ (new K)〈{M1}K〉halt

P1(M2) | R
τ

−→ new K; (halt | R′({M2}K))

It remains to show that . . .

193-b

Claim: For all S(x), if K /∈ fn(S), and if S({M1}K)
β

−→ A then

• A = B({M1}K) with K /∈ fn(S)

• S({M2}K)
β

−→ B({M1}K)

194

Claim: For all S(x), if K /∈ fn(S), and if S({M1}K)
β

−→ A then

• A = B({M1}K) with K /∈ fn(S)

• S({M2}K)
β

−→ B({M1}K)

Proof: by structural induction on S.

194-a

Case 1: S = sendc〈N1, . . . ,Nk〉;S1

We have S({M1}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M1}K)

and also S({M2}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M2}K)

195

Case 1: S = sendc〈N1, . . . ,Nk〉;S1

We have S({M1}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M1}K)

and also S({M2}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M2}K)

Case 2: S = recvc(x1, . . . , xk);S1

We have S({M1}K)
c

−→ (x1, . . . , xk)S1({M1}K)

and also We have S({M2}K)
c

−→ (x1, . . . , xk)S1({M2}K)

195-a

Case 1: S = sendc〈N1, . . . ,Nk〉;S1

We have S({M1}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M1}K)

and also S({M2}K)
c

−→ (〈N1, . . . ,Nk〉S1)({M2}K)

Case 2: S = recvc(x1, . . . , xk);S1

We have S({M1}K)
c

−→ (x1, . . . , xk)S1({M1}K)

and also We have S({M2}K)
c

−→ (x1, . . . , xk)S1({M2}K)

Case 3: S = halt. Trivial, since no actions are possible.

195-b

Case 4: S = S1 | S2,

and S1({M1}K
β

−→ A1

so that S({M1}K)
β

−→ A1 | S2({M1}K)

By induction hypothesis, A1 = B1({M1}K), K /∈ fn(B1) and

S1({M2}K)
β

−→ B1({M2}K).

Then we have S({M2}K)
β

−→ B1({M2}K/x) | S2({M2}K).

196

Case 4: S = S1 | S2,

and S1({M1}K
β

−→ A1

so that S({M1}K)
β

−→ A1 | S2({M1}K)

By induction hypothesis, A1 = B1({M1}K), K /∈ fn(B1) and

S1({M2}K)
β

−→ B1({M2}K).

Then we have S({M2}K)
β

−→ B1({M2}K/x) | S2({M2}K).

We argue similarly if the right component S2 makes an action.

196-a

Case 5: S = S1 | S2,

S1({M1}K)
c

−→ A1 and S2({M1}K)
c

−→ A2

so that S({M1}K)
τ

−→ A1 @ A2

By induction hypothesis,

A1 = B1({M1}K), A2 = B2({M1}K), K /∈ fn(B1) ∪ fn(B2),

S1({M2}K)
c

−→ B1({M2}K) and S2({M2}K)
c

−→ B2({M2}K).

Hence S({M2}K)
τ

−→ B1({M2}K) @ B2({M2}K)

197

Case 6: S = repeat S1 and

• either S1({M1}K)
β

−→ A so that S({M1}K)
β

−→ A | S({M1}K).

• or S1({M1}K)
c

−→ A1 and S2({M1}K)
c

−→ A2

so that S({M1}K)
τ

−→ (A1 @ A2) | S({M1}K)

The cases are similar to Case 4 and Case 5.

198

Case 6: S = repeat S1 and

• either S1({M1}K)
β

−→ A so that S({M1}K)
β

−→ A | S({M1}K).

• or S1({M1}K)
c

−→ A1 and S2({M1}K)
c

−→ A2

so that S({M1}K)
τ

−→ (A1 @ A2) | S({M1}K)

The cases are similar to Case 4 and Case 5.

Case 7: S = new n;S1. Again a straightforward application of induction

hypothesis.

198-a

Case 8: S = check (M == N);S1,

M [{M1}K/x] = N [{M1}K/x] and S1({M1}K)
β

−→ A so that S({M1}K)
β

−→ A

Since K /∈ fn(M) ∪ fn(N), we have M = N . (Proof: exercise)

Hence M [{M2}K/x] = N [{M2}K/x].

Also by induction hypothesis, A = B({M1}K) and

S1({M2}K)
β

−→ B({M2}K)

so that S({M2}K)
β

−→ B({M2}K).

199

Case 9: S = let (x, y) = M ;S1

Case 10: S = case M of 0 : S1, succ (y) : S2

These are similar to (and simpler than) Case 11.

200

Case 11: S = case M of {x1, . . . , xk}N : S1.

K 6= N because K /∈ fn(S).

Hence if M is the variable x then no action is possible.

For an action to be possible we must have M = {N1, . . . ,Nk}N .

Let S1[N1/x1, . . . ,Nk/xk][{M1}K/x]
β

−→ A

so that S[{M1}K/x]
β

−→ A.

By induction hypothesis, A = B[{M1}K/x] and

S1[N1/x1, . . . ,Nk/xk][{M2}K/x]
β

−→ B[{M2}K/x]

so that S[{M2}K/x]
β

−→ B[{M2}K/x].

201

After all this, we conclude:

the process new K; sendc〈{x}K〉; halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

202

After all this, we conclude:

the process new K; sendc〈{x}K〉; halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

We define rules for controlling the flow of information in the protocol.

202-a

Information flow analysis for the Spi-calculus

• Information flow analaysis is used in various programming languages

(imperative, functional, object-oriented languages, process calculi,...) to

study security properties.

• Data is classified into various security levels representing varying degrees of

confidentiality.

• A program is secure if information from more confidential data does not

flow to less confidential data.

203

Consider the C language.

Assume variable x has security level high and variable y has security level low.

Then the following statement cannot be allowed in the program:

ylow = xhigh + 1;

By reading the less confidential data y, we can get information about the high

confidential data x.

The following statement is fine.

xhigh = ylow + 1;

204

The following code should be disallowed.

z = 2 ∗ xhigh + 1;

if (z > 100)

ylow = 10;

else

ylow = 20;

By observing y we can get some information about x.

−→ Implicit flows should also be controlled.

205

For the Spi-calculus . . .

We classify data into three classes

secret data which should not be leaked

public data which can be communicated to anyone

any arbitrary data

Subsumption relation on classes:

secret � any

public � any

T � T for T ∈ {secret, public, any}

206

Some initial ideas.

• Secret data should not be sent on public channels.

• Secret data should encrypted with public key should not be public.

• Public data encrypted with secret key may be made public.

• Data encrypted with private key may be made public.

We formulate these as a set of typing rules.

type of message M = secrecy level of M

process P is well-types = P does not allow bad information flow

207

