The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

- The secret x should not be leaked ...
\longrightarrow This process is insecure: $\quad \operatorname{send}_{c}\langle x\rangle$; halt

The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

- The secret x should not be leaked ...
\longrightarrow This process is insecure: $\operatorname{send}_{c}\langle x\rangle$; halt
- ... and even any partial information about x should not be leaked.
\longrightarrow This process is insecure: $\quad \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle$; halt

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

- Assuming perfect cryptography, one cannot compute x from $\{0\}_{x}$.

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

- Assuming perfect cryptography, one cannot compute x from $\{0\}_{x}$.
- But one can get partial information about x.

For example, one can find out whether x is 0 or not, by using the property:

$$
x=0 \quad \text { iff } \quad\{0\}_{x}=\{0\}_{0}
$$

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

- Assuming perfect cryptography, one cannot compute x from $\{0\}_{x}$.
- But one can get partial information about x.

For example, one can find out whether x is 0 or not, by using the property:

$$
x=0 \quad \text { iff } \quad\{0\}_{x}=\{0\}_{0}
$$

$\longrightarrow P(x)$ does not preserve the secrecy of x.

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

In spi-calculus terminology, we consider the test (Q, \bar{d}), where
$Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y)$
$Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2}$
$Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ;$ halt

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

In spi-calculus terminology, we consider the test (Q, \bar{d}), where
$Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y) \quad Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2}$
$Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ;$ halt

We show that $P(0) \not 千 P($ succ (0)).

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

In spi-calculus terminology, we consider the test (Q, \bar{d}), where
$Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y)$
$Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2}$
$Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ;$ halt

We show that $P(0) \not 千 P($ succ $(0))$.
$P(0) \xrightarrow{\bar{c}}\left\langle\{0\}_{0}\right\rangle$ halt \quad and $\quad Q \xrightarrow{c}(y) Q_{1}(y)$

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

In spi-calculus terminology, we consider the test (Q, \bar{d}), where
$Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y)$
$Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2}$
$Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ;$ halt

We show that $P(0) \not 千 P($ succ (0)).
$P(0) \xrightarrow{\bar{c}}\left\langle\{0\}_{0}\right\rangle$ halt \quad and $\quad Q \xrightarrow{c}(y) Q_{1}(y)$

$$
P(0) \mid Q \quad \xrightarrow{\tau} \quad \bar{c}\left\langle\{0\}_{0}\right\rangle \text { halt } \quad @ \quad(y) Q_{1}(y)
$$

$$
P(x) \triangleq \operatorname{send}_{c}\left\langle\{0\}_{x}\right\rangle ; \text { halt }
$$

In spi-calculus terminology, we consider the test (Q, \bar{d}), where
$Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y)$
$Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2}$
$Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ;$ halt

We show that $P(0) \nsucceq P(\operatorname{succ}(0))$.
$P(0) \xrightarrow{\bar{c}}\left\langle\{0\}_{0}\right\rangle$ halt \quad and $\quad Q \xrightarrow{c}(y) Q_{1}(y)$

$$
\begin{aligned}
P(0) \mid Q & \xrightarrow{\tau} \bar{c}\left\langle\{0\}_{0}\right\rangle \text { halt } @ \quad(y) Q_{1}(y) \\
& =\text { halt } \mid Q_{1}\left(\{0\}_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& P(x) \triangleq \operatorname{send}_{c}\left\{\{0\}_{x}\right\rangle \text {; halt } \\
& Q \triangleq \operatorname{recv}_{c}(y) ; Q_{1}(y) \quad Q_{1}(y) \triangleq \operatorname{check}\left(y==\{0\}_{0}\right) ; Q_{2} \\
& Q_{2} \triangleq \operatorname{send}_{d}\langle 0\rangle ; \text { halt } \\
& Q_{1}\left(\{0\}_{0}\right) \quad>\quad Q_{2} \quad \xrightarrow{\bar{d}} \quad\langle 0\rangle \text { halt } \\
& \text { Hence } Q_{1}\left(\{0\}_{0}\right) \quad \xrightarrow{\bar{d}} \quad\langle 0\rangle \text { halt } \\
& \text { Hence halt } \mid Q_{1}\left(\{0\}_{0}\right) \xrightarrow{\bar{d}} \text { halt } \mid\langle 0\rangle \text { halt } \\
& =\langle 0\rangle \text { (halt } \mid \text { halt })
\end{aligned}
$$

Hence $P(0)$ passes the test (Q, \bar{d}).
And we can check that $P($ succ $(0))$ does not pass the test (Q, \bar{d}).

Similarly the following challenge response step does not preserve secrecy of $K_{a b}$ in the spi-calculus model, although the key $K_{a b}$ cannot be computed by an attacker.

$$
\begin{aligned}
& A \longrightarrow B: N_{a} \\
& B \longrightarrow A:\left\{N_{a}\right\}_{K_{a b}}
\end{aligned}
$$

One session of the protocol can be represented by the process

$$
\text { new } K ;\left(\text { new } N ; \operatorname{send}_{c}\langle N\rangle ; \text { halt } \mid \operatorname{recv}_{c}(x) ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }\right)
$$

Intuitively, an attacker can send send a desired message in place of N_{a} and then get partial information about the secret key as in the previous example.

Another example: $\quad P_{1}(x) \triangleq$ new K; $\operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt.

Another example: $\quad P_{1}(x) \triangleq$ new K; $\operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt.

The protocol is secure.

Another example: $\quad P_{1}(x) \triangleq$ new K; $\operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt.

The protocol is secure. How to prove it?

Another example: $P_{1}(x) \triangleq$ new $K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt.

The protocol is secure. How to prove it?

Consider arbitrary terms M_{1} and M_{2}. We show that:
if $P_{1}\left(M_{1}\right)$ passes some test (Q, β) then $P_{1}\left(M_{2}\right)$ also passes the test (Q, β)

Another example:

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt. }
$$

The protocol is secure. How to prove it?

Consider arbitrary terms M_{1} and M_{2}. We show that:
if $P_{1}\left(M_{1}\right)$ passes some test (Q, β) then $P_{1}\left(M_{2}\right)$ also passes the test (Q, β)

For this we show that for all $n \geq 0$ and for all R, if $P_{1}\left(M_{1}\right) \mid R$ can make a sequence of actions $\beta_{1}, \ldots, \beta_{n}$ then $P_{1}\left(M_{2}\right) \mid R$ can also do so.

Note: we must have $\beta_{i}=\tau$ for $i \leq n-1$.

Another example:

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt. }
$$

The protocol is secure. How to prove it?

Consider arbitrary terms M_{1} and M_{2}. We show that:
if $P_{1}\left(M_{1}\right)$ passes some test (Q, β) then $P_{1}\left(M_{2}\right)$ also passes the test (Q, β)

For this we show that for all $n \geq 0$ and for all R, if $P_{1}\left(M_{1}\right) \mid R$ can make a sequence of actions $\beta_{1}, \ldots, \beta_{n}$ then $P_{1}\left(M_{2}\right) \mid R$ can also do so.

Note: we must have $\beta_{i}=\tau$ for $i \leq n-1$.

By induction on n.

Another example:

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt. }
$$

The protocol is secure. How to prove it?

Consider arbitrary terms M_{1} and M_{2}. We show that:
if $P_{1}\left(M_{1}\right)$ passes some test (Q, β) then $P_{1}\left(M_{2}\right)$ also passes the test (Q, β)

For this we show that for all $n \geq 0$ and for all R, if $P_{1}\left(M_{1}\right) \mid R$ can make a sequence of actions $\beta_{1}, \ldots, \beta_{n}$ then $P_{1}\left(M_{2}\right) \mid R$ can also do so.

Note: we must have $\beta_{i}=\tau$ for $i \leq n-1$.

By induction on n. For $n=0$ there is nothing is prove.

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }
$$

Case 1: the left component makes an action.
$P_{1}\left(M_{1}\right) \mid R \xrightarrow{\bar{c}}($ new $K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle($ halt $\mid R)$

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }
$$

Case 1: the left component makes an action.
$P_{1}\left(M_{1}\right) \mid R \xrightarrow{\bar{c}}($ new $K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle($ halt $\mid R)$

Then we also have
$P_{1}\left(M_{2}\right) \mid R \xrightarrow{\bar{c}}($ new $K)\left\langle\left\{M_{2}\right\}_{K}\right\rangle($ halt $\mid R)$

No further transitions are possible in either case. Hence we are done.

Case 2: the right component R is a process and makes an action.
$R \xrightarrow{\beta_{1}} B$ so that $P_{1}\left(M_{1}\right)\left|R \xrightarrow{\beta_{1}} P_{1}\left(M_{1}\right)\right| B$
and $P_{1}\left(M_{1}\right) \mid B$ makes a sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

Case 2: the right component R is a process and makes an action.
$R \xrightarrow{\beta_{1}} B$ so that $P_{1}\left(M_{1}\right)\left|R \xrightarrow{\beta_{1}} P_{1}\left(M_{1}\right)\right| B$
and $P_{1}\left(M_{1}\right) \mid B$ makes a sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

Then we also have $P_{1}\left(M_{2}\right)\left|R \xrightarrow{\beta_{1}} P_{1}\left(M_{2}\right)\right| B$
and by induction hypothesis, $P_{1}\left(M_{2}\right) \mid B$ makes a sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }
$$

Case 3: the two components communicate over channel c.

$$
\begin{array}{lrl}
& P_{1}\left(M_{1}\right) & \xrightarrow{\bar{c}}(\text { new } K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle \text { halt } \\
\text { and } & R & \xrightarrow{c} \\
\text { and } & (y) R^{\prime} \\
\text { so that } & P_{1}\left(M_{1}\right) \mid R & \xrightarrow{\tau} \\
\text { new } K ;\left(\text { halt } \mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)
\end{array}
$$

and new K; (halt $\left.\mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)$ makes the sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }
$$

Case 3: the two components communicate over channel c.

$$
\begin{array}{lrl}
& P_{1}\left(M_{1}\right) & \xrightarrow{\bar{c}}(\text { new } K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle \text { halt } \\
\text { and } & R & \xrightarrow{c}(y) R^{\prime} \\
\text { so that } & P_{1}\left(M_{1}\right) \mid R & \xrightarrow{\tau} \\
\text { new } K ;\left(\text { halt } \mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)
\end{array}
$$

and new K; (halt $\left.\mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)$ makes the sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

Then we also have

$$
\begin{array}{rll}
P_{1}\left(M_{2}\right) & \xrightarrow{\bar{c}} \quad(\text { new } K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle \text { halt } \\
P_{1}\left(M_{2}\right) \mid R & \xrightarrow{\tau} \quad \text { new } K ;\left(\text { halt } \mid R^{\prime}\left(\left\{M_{2}\right\}_{K}\right)\right)
\end{array}
$$

$$
P_{1}(x) \triangleq \text { new } K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle ; \text { halt }
$$

Case 3: the two components communicate over channel c.

$$
\begin{array}{lrl}
& P_{1}\left(M_{1}\right) & \xrightarrow{\bar{c}}(\text { new } K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle \text { halt } \\
\text { and } & R & \xrightarrow{c} \\
\text { and } & (y) R^{\prime} \\
\text { so that } & P_{1}\left(M_{1}\right) \mid R & \xrightarrow{\tau} \\
\text { new } K ;\left(\text { halt } \mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)
\end{array}
$$

and new K; halt $\left.\mid R^{\prime}\left(\left\{M_{1}\right\}_{K}\right)\right)$ makes the sequence of actions $\beta_{2}, \ldots, \beta_{n}$.

Then we also have

$$
\begin{array}{rll}
P_{1}\left(M_{2}\right) & \xrightarrow{\bar{c}} \quad \text { (new } K)\left\langle\left\{M_{1}\right\}_{K}\right\rangle \text { halt } \\
P_{1}\left(M_{2}\right) \mid R & \xrightarrow{\tau} \quad \text { new } K ;\left(\text { halt } \mid R^{\prime}\left(\left\{M_{2}\right\}_{K}\right)\right)
\end{array}
$$

It remains to show that ...

Claim: For all $S(x)$, if $K \notin f n(S)$, and if $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$ then

- $A=B\left(\left\{M_{1}\right\}_{K}\right)$ with $K \notin f n(S)$
- $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B\left(\left\{M_{1}\right\}_{K}\right)$

Claim: For all $S(x)$, if $K \notin f n(S)$, and if $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$ then

- $A=B\left(\left\{M_{1}\right\}_{K}\right)$ with $K \notin f n(S)$
- $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B\left(\left\{M_{1}\right\}_{K}\right)$

Proof: by structural induction on S.

Case 1: $S=\operatorname{send}_{c}\left\langle N_{1}, \ldots, N_{k}\right\rangle ; S_{1}$
We have $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{1}\right\}_{K}\right)$ and also $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{2}\right\}_{K}\right)$

Case 1: $S=\operatorname{send}_{c}\left\langle N_{1}, \ldots, N_{k}\right\rangle ; S_{1}$
We have $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{1}\right\}_{K}\right)$ and also $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{2}\right\}_{K}\right)$

Case 2: $S=\operatorname{recv}_{c}\left(x_{1}, \ldots, x_{k}\right) ; S_{1}$
We have $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{c}\left(x_{1}, \ldots, x_{k}\right) S_{1}\left(\left\{M_{1}\right\}_{K}\right)$
and also We have $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{c}\left(x_{1}, \ldots, x_{k}\right) S_{1}\left(\left\{M_{2}\right\}_{K}\right)$

Case 1: $S=\operatorname{send}_{c}\left\langle N_{1}, \ldots, N_{k}\right\rangle ; S_{1}$
We have $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{1}\right\}_{K}\right)$ and also $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\bar{c}}\left(\left\langle N_{1}, \ldots, N_{k}\right\rangle S_{1}\right)\left(\left\{M_{2}\right\}_{K}\right)$

Case 2: $S=\operatorname{recv}_{c}\left(x_{1}, \ldots, x_{k}\right) ; S_{1}$
We have $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{c}\left(x_{1}, \ldots, x_{k}\right) S_{1}\left(\left\{M_{1}\right\}_{K}\right)$ and also We have $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{c}\left(x_{1}, \ldots, x_{k}\right) S_{1}\left(\left\{M_{2}\right\}_{K}\right)$

Case 3: $S=$ halt. Trivial, since no actions are possible.

Case 4: $S=S_{1} \mid S_{2}$,
and $\quad S_{1}\left(\left\{M_{1}\right\}_{K} \quad \xrightarrow{\beta} A_{1}\right.$
so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A_{1} \mid S_{2}\left(\left\{M_{1}\right\}_{K}\right)$

By induction hypothesis, $A_{1}=B_{1}\left(\left\{M_{1}\right\}_{K}\right), K \notin f n\left(B_{1}\right)$ and $S_{1}\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B_{1}\left(\left\{M_{2}\right\}_{K}\right)$.

Then we have $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B_{1}\left(\left\{M_{2}\right\}_{K} / x\right) \mid S_{2}\left(\left\{M_{2}\right\}_{K}\right)$.

Case 4: $S=S_{1} \mid S_{2}$,
and $\quad S_{1}\left(\left\{M_{1}\right\}_{K} \xrightarrow{\beta} A_{1}\right.$
so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A_{1} \mid S_{2}\left(\left\{M_{1}\right\}_{K}\right)$

By induction hypothesis, $A_{1}=B_{1}\left(\left\{M_{1}\right\}_{K}\right), K \notin f n\left(B_{1}\right)$ and $S_{1}\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B_{1}\left(\left\{M_{2}\right\}_{K}\right)$.

Then we have $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B_{1}\left(\left\{M_{2}\right\}_{K} / x\right) \mid S_{2}\left(\left\{M_{2}\right\}_{K}\right)$.

We argue similarly if the right component S_{2} makes an action.

Case 5: $S=S_{1} \mid S_{2}$,

$$
S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}} A_{1} \quad \text { and } \quad S_{2}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{c} A_{2}
$$

$$
\text { so that } S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\tau} A_{1} @ A_{2}
$$

By induction hypothesis,
$A_{1}=B_{1}\left(\left\{M_{1}\right\}_{K}\right), A_{2}=B_{2}\left(\left\{M_{1}\right\}_{K}\right), K \notin f n\left(B_{1}\right) \cup f n\left(B_{2}\right)$,
$S_{1}\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\bar{c}} B_{1}\left(\left\{M_{2}\right\}_{K}\right)$ and $S_{2}\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{c} B_{2}\left(\left\{M_{2}\right\}_{K}\right)$.

Hence $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\tau} B_{1}\left(\left\{M_{2}\right\}_{K}\right) @ B_{2}\left(\left\{M_{2}\right\}_{K}\right)$

Case 6: $S=$ repeat S_{1} and

- either $S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$ so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A \mid S\left(\left\{M_{1}\right\}_{K}\right)$.
- or $S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}} A_{1}$ and $S_{2}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{c} A_{2}$ so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\tau}\left(A_{1} @ A_{2}\right) \mid S\left(\left\{M_{1}\right\}_{K}\right)$

The cases are similar to Case 4 and Case 5 .

Case 6: $S=$ repeat S_{1} and

- either $S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$ so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A \mid S\left(\left\{M_{1}\right\}_{K}\right)$.
- or $S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\bar{c}} A_{1}$ and $S_{2}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{c} A_{2}$
so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\tau}\left(A_{1} @ A_{2}\right) \mid S\left(\left\{M_{1}\right\}_{K}\right)$

The cases are similar to Case 4 and Case 5 .

Case 7: $S=$ new $n ; S_{1}$. Again a straightforward application of induction hypothesis.

Case 8: $S=$ check $(M==N) ; S_{1}$,
$M\left[\left\{M_{1}\right\}_{K} / x\right]=N\left[\left\{M_{1}\right\}_{K} / x\right]$ and $S_{1}\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$ so that $S\left(\left\{M_{1}\right\}_{K}\right) \xrightarrow{\beta} A$

Since $K \notin f n(M) \cup f n(N)$, we have $M=N$. (Proof: exercise)

Hence $M\left[\left\{M_{2}\right\}_{K} / x\right]=N\left[\left\{M_{2}\right\}_{K} / x\right]$.

Also by induction hypothesis, $A=B\left(\left\{M_{1}\right\}_{K}\right)$ and
$S_{1}\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B\left(\left\{M_{2}\right\}_{K}\right)$
so that $S\left(\left\{M_{2}\right\}_{K}\right) \xrightarrow{\beta} B\left(\left\{M_{2}\right\}_{K}\right)$.

Case 9: $S=\operatorname{let}(x, y)=M ; S_{1}$

Case 10: $S=$ case M of $0: S_{1}$, $\operatorname{succ}(y): S_{2}$

These are similar to (and simpler than) Case 11.

Case 11: $S=$ case M of $\left\{x_{1}, \ldots, x_{k}\right\}_{N}: S_{1}$.
$K \neq N$ because $K \notin f n(S)$.
Hence if M is the variable x then no action is possible.
For an action to be possible we must have $M=\left\{N_{1}, \ldots, N_{k}\right\}_{N}$.
Let $S_{1}\left[N_{1} / x_{1}, \ldots, N_{k} / x_{k}\right]\left[\left\{M_{1}\right\}_{K} / x\right] \xrightarrow{\beta} A$
so that $S\left[\left\{M_{1}\right\}_{K} / x\right] \xrightarrow{\beta} A$.

By induction hypothesis, $A=B\left[\left\{M_{1}\right\}_{K} / x\right]$ and $S_{1}\left[N_{1} / x_{1}, \ldots, N_{k} / x_{k}\right]\left[\left\{M_{2}\right\}_{K} / x\right] \xrightarrow{\beta} B\left[\left\{M_{2}\right\}_{K} / x\right]$
so that $S\left[\left\{M_{2}\right\}_{K} / x\right] \xrightarrow{\beta} B\left[\left\{M_{2}\right\}_{K} / x\right]$.

After all this, we conclude:
the process new $K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

After all this, we conclude:
the process new $K ; \operatorname{send}_{c}\left\langle\{x\}_{K}\right\rangle$; halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

We define rules for controlling the flow of information in the protocol.

Information flow analysis for the Spi-calculus

- Information flow analaysis is used in various programming languages (imperative, functional, object-oriented languages, process calculi,...) to study security properties.
- Data is classified into various security levels representing varying degrees of confidentiality.
- A program is secure if information from more confidential data does not flow to less confidential data.

Consider the C language.
Assume variable x has security level high and variable y has security level low. Then the following statement cannot be allowed in the program:

$$
\mathrm{y}^{\text {low }}=\mathrm{x}^{\text {high }}+1
$$

By reading the less confidential data y, we can get information about the high confidential data x .

The following statement is fine.

$$
\mathrm{x}^{\text {high }}=\mathrm{y}^{\text {low }}+1 ;
$$

The following code should be disallowed.

$$
\begin{aligned}
& \mathrm{z}=2 * \mathrm{x}^{\text {high }}+1 ; \\
& \text { if } \quad(\mathrm{z}>100) \\
& \quad \mathrm{y}^{\text {low }}=10 \\
& \text { else } \\
& \quad \mathrm{y}^{\text {low }}=20
\end{aligned}
$$

By observing y we can get some information about x .
\longrightarrow Implicit flows should also be controlled.

For the Spi-calculus ...
We classify data into three classes
secret data which should not be leaked
public data which can be communicated to anyone
any arbitrary data

Subsumption relation on classes:

$$
\begin{array}{ll}
\text { secret } & \preceq \text { any } \\
\text { public } & \preceq \text { any } \\
T & \preceq T \quad \text { for } T \in\{\text { secret, public, any }\}
\end{array}
$$

Some initial ideas.

- Secret data should not be sent on public channels.
- Secret data should encrypted with public key should not be public.
- Public data encrypted with secret key may be made public.
- Data encrypted with private key may be made public.

We formulate these as a set of typing rules.
type of message $M=$ secrecy level of M
process P is well-types $=P$ does not allow bad information flow

