The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

185



The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

e The secret x should not be leaked ...

— This process is insecure: send.(x); halt

185-a



The spi-calculus notion of secrecy is stronger than our usual notions of secrecy.

e The secret x should not be leaked ...

— This process is insecure: send.(x); halt

e ... and even any partial information about x should not be leaked.

—— This process is insecure: send.({0}); halt

185-b



P(x) £ send.({0},): halt

186



P(x) £ send ({0}, ); halt

e Assuming perfect cryptography, one cannot compute x from {0},.

186-a



P(x) £ send.({0},): halt

e Assuming perfect cryptography, one cannot compute x from {0},.

e But one can get partial information about .

For example, one can find out whether x is 0 or not, by using the property:

r =0 iff {O}x — {0}0

186-b



P(x) £ send.({0},): halt

e Assuming perfect cryptography, one cannot compute x from {0},.

e But one can get partial information about x.
For example, one can find out whether x is 0 or not, by using the property:

r =0 iff {O}x — {0}0

— P(x) does not preserve the secrecy of x.

186-c



P(x) £ send.({0},): halt
In spi-calculus terminology, we consider the test (Q,d), where

Q = recve(y); Q1(y) Q1(y) = check (y == {0}0); Q2 Q2 = sendy(0); halt

187



P(x) £ send.({0},): halt
In spi-calculus terminology, we consider the test (Q,d), where

Q = recve(y); Q1(y) Q1(y) = check (y == {0}0); Q2 Q2 = sendy(0); halt

We show that P(0) % P(succ (0)).

187-a



P(x) £ send.({0},): halt
In spi-calculus terminology, we consider the test (Q,d), where

Q = recve(y); Q1(y) Q1(y) = check (y == {0}0); Q2 Q2 = sendy(0); halt

We show that P(0) % P(succ (0)).

P(0) % ({0}gdhalt  and Q% (¥)Qi(y)

187-b



P(x) £ send.({0},): halt
In spi-calculus terminology, we consider the test (Q,d), where

Q = recve(y); Q1(y) Q1(y) = check (y == {0}0); Q2 Q2 = sendy(0); halt

We show that P(0) % P(succ (0)).

P(0) % ({0}gdhalt  and Q% (¥)Qi(y)

P0)]Q — ¢{{0}o)halt @ (y)Qi(y)

187-¢



P(x) £ send.({0},): halt
In spi-calculus terminology, we consider the test (Q,d), where

Q = recve(y); Q1(y) Q1(y) = check (y == {0}0); Q2 Q2 = sendy(0); halt

We show that P(0) % P(succ (0)).

P(0) % ({0}gdhalt  and Q% (¥)Qi(y)

P0)|Q — ¢{{0}o)halt @ (y)Qi(y)
= halt | Q1({0}0)

187-d



P(x) £ send.({0},): halt

Q Zrecve(y); Qi(y)  Qi(y) = check (y == {0}0); Q2

Q({0}) > @ -5 (O)halt
Hence Q1({0}0) 4, (0)halt
halt [ Q1 ({0%0) - halt | (0Yhalt

Hence

= (0)(halt | halt)

Hence P(0) passes the test (Q,d).

Q2 = sendy(0); halt

And we can check that P(succ (0)) does not pass the test (Q,d).

188



Similarly the following challenge response step does not preserve secrecy of K
in the spi-calculus model, although the key K., cannot be computed by an

attacker.

A— B: N,
B— A:{Ny}k,,

One session of the protocol can be represented by the process

new K; (new N;send.(N);halt | recv.(x);send.{({x}k); halt)

Intuitively, an attacker can send send a desired message in place of N, and

then get partial information about the secret key as in the previous example.

189



Another example: Pi(z) = new K:send.{{x}K); halt.

190



Another example: Pi(x) £ new K;send.{{z}f);halt.

The protocol is secure.

190-a



Another example: Pi(x) £ new K;send.{{z}f);halt.

The protocol is secure. How to prove it?

190-b



Another example: Pi(z) = new K:send.{{x}K); halt.
The protocol is secure. How to prove it?

Consider arbitrary terms M and M>. We show that:
if P;(M;) passes some test (), 3) then P;(Ms) also passes the test (Q, )

190-c



Another example: Pi(z) = new K:send.{{x}K); halt.
The protocol is secure. How to prove it?

Consider arbitrary terms M and M>. We show that:
if P;(M;) passes some test (), 3) then P;(Ms) also passes the test (Q, )

For this we show that for all n > 0 and for all R, if P;(M;) | R can make a

sequence of actions i, ..., 3, then P;(Ms) | R can also do so.

Note: we must have 3, = 7 for 1 <n — 1.

190-d



Another example: Pi(z) = new K:send.{{x}K); halt.
The protocol is secure. How to prove it?

Consider arbitrary terms M and M>. We show that:
if P;(M;) passes some test (), 3) then P;(Ms) also passes the test (Q, )

For this we show that for all n > 0 and for all R, if P;(M;) | R can make a
sequence of actions i, ..., 3, then P;(Ms) | R can also do so.

Note: we must have 3, = 7 for 1 <n — 1.

By induction on n.

190-¢e



Another example: Pi(z) = new K:send.{{x}K); halt.
The protocol is secure. How to prove it?

Consider arbitrary terms M and M>. We show that:
if P;(M;) passes some test (), 3) then P;(Ms) also passes the test (Q, )

For this we show that for all n > 0 and for all R, if P;(M;) | R can make a
sequence of actions i, ..., 3, then P;(Ms) | R can also do so.

Note: we must have 3, = 7 for 1 <n — 1.

By induction on n. For n = 0 there is nothing is prove.

190-f



Pi(z) £ new K:send.{{z}); halt

Case 1: the left component makes an action.

P (M) | R -5 (new K){({M}x)(halt | R)

191



Pi(z) £ new K:send.{{z}); halt

Case 1: the left component makes an action.

P (M) | R -5 (new K){({M}x)(halt | R)

Then we also have
Pi (M) | R == (new K)({M>s}g)(halt | R)

No further transitions are possible in either case. Hence we are done.

191-a



Case 2: the right component R is a process and makes an action.
R 2% B so that Py(M;) | R 2% (M) | B

and P (M) | B makes a sequence of actions (s, ..., Oy.

192



Case 2: the right component R is a process and makes an action.
R 2% B so that Py(M;) | R 2% (M) | B

and P (M) | B makes a sequence of actions (s, ..., Oy.

Then we also have P;(Ms) | R A, Pi(Ms) | B

and by induction hypothesis, P;(M>) | B makes a sequence of actions

627"'7671-

192-a



Pi(z) £ new K:send.{{z}); halt

Case 3: the two components communicate over channel c.

P(M;) -S  (new K){({M;j}x)halt
and R = (R
sothat P (Mp)|R —— new K:(halt| R'({M;}x))

and new K (halt | R'({M;}k)) makes the sequence of actions (s, . ..

, Bn.

193



Pi(z) £ new K:send.{{z}); halt

Case 3: the two components communicate over channel c.

P(M;) -S  (new K){({M;j}x)halt
and R = (R
sothat P (Mp)|R —— new K:(halt| R'({M;}x))

and new K (halt | R'({M;}k)) makes the sequence of actions (s, . ..

Then we also have

Pi (M) = (new K){{M;}x)halt
Pi(My)|R - new K:(halt| R'({M}k))

, Bn.

193-a



Pi(z) £ new K:send.{{z}); halt

Case 3: the two components communicate over channel c.

P(M;) -S  (new K){({M;j}x)halt
and R = (R
sothat P (Mp)|R —— new K:(halt| R'({M;}x))

and new K (halt | R'({M;}k)) makes the sequence of actions (s, . ..

Then we also have

Pi (M) = (new K){{M;}x)halt
Pi(My)|R - new K:(halt| R'({M}k))

It remains to show that ...

, Bn.

193-b



Claim: For all S(x), if K ¢ fn(S), and if S({M;}k) 7, A then

o A=B({Mg) with K ¢ fn(S)

o S({Ms}x) -5 B({Mi}x)

194



Claim: For all S(x), if K ¢ fn(S), and if S({M;}k) 7, A then

o A=B({Mg) with K ¢ fn(S)

o S({Ms}x) -5 B({Mi}x)

Proof: by structural induction on S.

194-2a



Case 1: § =send.(Ny,..., Ni); S1
We have S({Mi1}x) —— ({(N1,..., Ni)S1)({Mi}k)
and also S({Ma} k) N (N1, .., Ni)S1)({ M2}t i)

195



Case 1: S =send.(Ny,..., Ng); S
We have S({Mi1}x) —— ({(N1,..., Ni)S1)({Mi}k)
and also S({Ma} k) N (N1, .+ NE)S1) ({ M2} k)

Case 2: S = recvc(:cl, o, XE); ST
We have S({M;1}x) — (x1,... ajk)S1({M1}K)
and also We have S({Ms}g) — (1,...,21)S1({ M2} k)

195-a



Case 1: S =send.(Ny,..., Ng); S
We have S({Mi1}x) —— ({(N1,..., Ni)S1)({Mi}k)
and also S({Ma} k) N (N1, .+ NE)S1) ({ M2} k)

Case 2: S = recvc(:cl, o, XE); ST
We have S({M;1}x) — (x1,... ajk)S1({M1}K)

and also We have S({Ms}r) — (x1,...,21)S1({ M2} K)

Case 3: S = halt. Trivial, since no actions are possible.

195-b



Case 4: § =51 | 5o,

and S1({ M1}k 2, Aq

so that S({Mi}k) 2, Ay | So({Mh}k)

By induction hypothesis, Ay = Bi({M1}k), K ¢ fn(B1) and

S ({ Mz} i) -5 BI({Mo} k).

Then we have S({Ms} ) = Bi({Ma}x /) | Sa({M2} k).

196



Case 4: § =51 | 5o,

and S1({ M1}k 2, Aq
so that S({Mi}k) 2, Ay | So({Mh}k)

By induction hypothesis, Ay = Bi({M1}k), K ¢ fn(B1) and

S ({ Mz} i) -5 BI({Mo} k).

Then we have S({Ms} ) = Bi({Ma}x /) | Sa({M2} k).

We argue similarly if the right component S5 makes an action.

196-a



Case 5: § =51 | 59,

Sl({Ml}K) L A1 and SQ({Ml}K) L> A2
so that S({Ml}K) L> A1 Q AQ

By induction hypothesis,
Ay = Bi({Mi}k), As = Bo({M1}k), K & [n(B1)U fn(Bs),
S1({Mz} ) —= B1({Ma} i) and Ss({Ma}x) = Bo({M2} k).

Hence S({ Mz} k) — Bi({M2}k) @ Bo({ M2} k)

197



Case 6: S = repeat S and
o cither Sy ({M;}x) 2 A so that S({M; Vi) - A | SUM; Y k).

® Or Sl({Ml}K) L A1 and SQ({Ml}K) L> AQ
so that S({M1}x) — (A1 @ As) | S({M1}k)

The cases are similar to Case 4 and Case 5.

198



Case 6: S = repeat S and
o cither Sy ({M;}x) 2 A so that S({M; Vi) - A | SUM; Y k).

o or S{({Mi}tk) -5 Ay and So({Mi)}x) - A,
SO that S({Ml}K) L> (A1 @ AQ) | S({Ml}K)

The cases are similar to Case 4 and Case 5.

Case 7: S = new n;S7. Again a straightforward application of induction

hypothesis.

198-a



Case 8: S = check (M == N); 5y,

M{M) g /2] = N{M; Vi /2] and Sy({M1} k) -2 A so that S({M;}x) -2 A

Since K ¢ fn(M)U fn(N), we have M = N. (Proof: exercise)
Hence M[{Ms}x/x] = N[{Ms}k/x].

Also by induction hypothesis, A = B({M;}x) and

S1({Ma} i) 2 B({ M} i)

s that S({My}x) - B({Ma}x).

199



Case 9: S =let (z,y) = M; 5

Case 10: S = case M of 0: 57, succ (y) : So

These are similar to (and simpler than) Case 11.

200



Case 11: S =case M of {x1,...,xx}n : S1.

K # N because K ¢ fn(S).
Hence if M is the variable x then no action is possible.

For an action to be possible we must have M = {Ny,..., N} n.

Let S1[Ny/a1,..., N/ [{Mi i /2] -2 A

so that S[{ M} /x] Ny

By induction hypothesis, A = B[{M;}x /x| and
S1[N1fa, .. Ny o] [{ Mo} i Ja] - BI{ Mz} i /2]
so that S[{Ma) /] -2 B{ Mo} /2.

201



After all this, we conclude:

the process new K;send.({x}x);halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

202



After all this, we conclude:

the process new K;send.({x}x);halt preserves the secrecy of x.

Unfortunately too tedious proof for an extremely simple protocol.

Need simpler methods of showing security of a protocol....

We define rules for controlling the flow of information in the protocol.

202-a



Information flow analysis for the Spi-calculus

e Information flow analaysis is used in various programming languages
(imperative, functional, object-oriented languages, process calculi,...) to

study security properties.

e Data is classified into various security levels representing varying degrees of

confidentiality:.

e A program is secure if information from more confidential data does not

flow to less confidential data.

203



Consider the C language.
Assume variable x has security level high and variable y has security level low.

Then the following statement cannot be allowed in the program:
ylo'w — Xhz'gh i 1’

By reading the less confidential data y, we can get information about the high

confidential data x.

The following statement is fine.

Xhzgh — ylow i 1,

204



The following code should be disallowed.

z = 2 % x99 4 1.

if (z > 100)
y' " = 10;
else
y' " = 20;

By observing y we can get some information about x.

— Implicit flows should also be controlled.

205



For the Spi-calculus ...
We classify data into three classes
secret data which should not be leaked

public data which can be communicated to anyone

any arbitrary data

Subsumption relation on classes:

secret =< any
public =< any
T =T  for T € {secret, public,any}

206



Some initial ideas.

e Secret data should not be sent on public channels.
e Secret data should encrypted with public key should not be public.
e Public data encrypted with secret key may be made public.

e Data encrypted with private key may be made public.

We formulate these as a set of typing rules.

type of message M = secrecy level of M

process P is well-types = P does not allow bad information flow

207



