
Hence if M has type secret and N has type public then {M}N has type secret.

If M has type secret and c has type public then sendc〈M〉;P is not well-typed.

If M has type public and c has type public then sendc〈M〉;P is well-typed.

0 has type public.

halt is well-typed.

. . .

208



We consider the process P (x) , sendc〈0〉; halt; which is trivially secure.

For information flow analysis, we use an environment E = {c : public(L)}

meaning c has type public (L will be explained later).

We have E ⊢ c : public and E ⊢ 0 : public, hence the send action is well-typed.

Also E ⊢ halt, meaning that halt is well-typed in environment E.

Combining all these we get E ⊢ P (x).

209



An environment E provides information about the classes to which names and

variables belong.

We define typing rules for the following kinds of judgments

⊢ E environment E is well formed

E ⊢ M : T term M is of class T in environment E

E ⊢ P process P is well typed in environment E

210



Consider again the insecure protocol sendc〈{0}x〉; halt.

We consider c to have level public. If we consider

x to be of type secret then {0}x is of type public and the process is well-typed.

That’s not what we want!

Solution: if we are interested in the secrecy of variable x then we consider x to

have type any.

We always protect the data of level any as if it were secret, but can exploit it

only as if it were public.

211



Informally we would like to show that if environment E has only any variables

and public names and E ⊢ P then P does not leak any variables x ∈ dom(E).

Consider: sendc〈x〉; halt

Consider E = {x : any, c : public :: L}.

x is of level any but is sent out on c of level public, which will be forbidden by

our typing rules.

212



Consider: sendc〈{0}x〉; halt

Consider E = {x : any, c : public :: L}.

Only terms of type secret or public can be used as encryption keys.

x is of type any, so the term {0}x has no type.

213



We follow some conventions for designing safe protocols.

A −→ S : A,B

S −→ A : {A,B,Na, {Nb}Ksb
}Ksa

A −→ B : {Nb}Ksb

A participant may play the role of A in one session and of B in another session.

We need a clear way of distinguishing the types of messages received and their

components.

This is important only for messages sent on secret channels and for messages

encrypted with secret keys.

214



We adopt the following standard format:

Messages sent on secret channels should have three components of levels secret,

any and public respectively.

Messages encrypted with secret will similarly have secret, any and public

components.

215



Consider protocol

B −→ A : Nb

A −→ B : {M,Nb}Kab

By replaying nonces, an attacker can find out whether the same M is sent

more than once, or different ones.

−→ leak of information.

216



Another example: the spi-calculus process

P (x, y) , new K; (recvc(z); sendc〈{x, z}K〉;

recvd(z); sendd〈{y, z}K〉; halt)

By sending the same z twice, once on channcel c and once on d, one can know

whether x = y.

In particular we have P (0, 0) 6≃ P (0, succ (0)).

Hence P (x, y) does not preserve secrecy of x and y.

217



To prevent this we include an extra fresh nonce (confounder) in each message

encrypted with secret keys.

A confounder is used at most once in an encrypted message.

Our previous protocol now becomes:

B −→ A : Nb

A −→ B : {M,Nb,Na}Kab

And the previous spi-calculus process becomes

P (x, y) , new K; (recvc(z); new m; sendc〈{x, z,m}K〉;

recvd(z); new n; sendd〈{y, z, n}K〉; halt)

218



Combining with the ides of message formatting, we arrive at the following

format for messages encrypted with secret keys:

{M1,M2,M3, n}K

where M1 : secret, M2 : any, M3 : public, and n is the confounder.

n can be used as confounder only in this term and nowhere else.

This information is remembered by the environment E.

If n : T :: {M1,M2,M3, n}K ∈ E then

then n can be used as a confounder only in {M1,M2,M3, n}K .

219



The typing rules

Well formed environments

⊢ ∅

⊢ E x /∈ dom(E)

⊢ E, x : T

The empty environment ∅ is well-formed.

dom(E) denotes the variables and names about which E has the typing

information.

220



For names, the environment should provide a type as well as information about

where it is used as a confounder.

⊢ E E ⊢ M1 : T1 . . . E ⊢ Mk : Tk n /∈ dom(E) E ⊢ N : R

⊢ E,n : T :: {M1, . . . ,Mk, n}N

The environment {x : secret,m : any :: {m}0, y : public,K : secret :: {K}0, n :

public :: {x,m, y, n}K} is well-formed.

The environment {x : secret,m : any :: {m}0, y : public, n : public ::

{x,m, y, n}K ,K : secret :: {K}0} is not well-formed.

221



Environment lookups and subsumption:

E ⊢ M : T T ⊑ R

E ⊢ M : R

⊢ E x : T ∈ E

E ⊢ x : T

⊢ E n : T :: {M1, . . . ,Mk, n}N ∈ E

E ⊢ n : T

Data of type public and secret are also of type any.

222



⊢ E

E ⊢ 0 : public

E ⊢ M : T

E ⊢ succ (M) : T

E ⊢ M : T E ⊢ N : T

E ⊢ 〈M,N〉 : T

Hence if E = {x : public, y : secret} then E ⊢ 〈x, y〉 : any.

223



Encryption

E ⊢ M1 : T . . . E ⊢ Mk : T E ⊢ N : public T = public if k = 0

E ⊢ {M1, . . . ,Mk}N : T

E ⊢ M1 : secret

E ⊢ N : secret

E ⊢ M2 : any E ⊢ M3 : public

n : T :: {M1,M2,M3, n}N ∈ E

E ⊢ {M1,M2,M3, n}N : public

Keys of type any are not used for encryption.

224



E ⊢ M : public E ⊢ M1 : public . . . E ⊢ Mk : public E ⊢ P

E ⊢ sendM 〈M1, . . . ,Mk〉;P

E ⊢ M : secret E ⊢ M1 : secret E ⊢ M2 : any E ⊢ M3 : public E ⊢ P

E ⊢ sendM 〈M1,M2,M3〉;P

Only public data may be sent on public channels.

On secret channels, data is always sent in our standard format.

Channels of type any are not used.

We consider pairing as left-associative.

For example (M1,M2,M3,M4) is same as ((M1,M2),M3,M4)

225



Similar rules for inputs.

E ⊢ M : public E, x1 : public, . . . , xk : public ⊢ P

E ⊢ recvM (x1, . . . , xk);P

E ⊢ M : secret E, x1 : secret, x2 : any, x3 : public ⊢ P

E ⊢ recvM (x1, x2, x3);P

The appropriate class information for the input variables is added to the

environment, and the new environment is used for typing the remaining

process.

226



Let E = {c : public :: {c}0} and P = recvc(x); sendc〈x〉; halt.

To show that E ⊢ P

we consider E′ = E, x : public and show that E′ ⊢ sendc〈x〉; halt.

227



⊢ E

E ⊢ halt

E ⊢ P E ⊢ Q

E ⊢ P | Q

E ⊢ P

E ⊢ repeat P

E,n : T :: L ⊢ P

E ⊢ new n;P

The newly created name can be chosen to be kept secret or can be revealed,

and can be chosen to used as a confounder in some message.

L could be anything trivial if we don’t want to use n as a confounder.

228



E ⊢ M : T E ⊢ N : R E ⊢ P T ,R ∈ {public, secret}

E ⊢ check (M == N);P

Equality checks are not allowed on data of class any to prevent implicit

information flow.

Equality checks are freely allowed among data of type public and secret!

229



Example Consider P , recvc(y); check (x == y); sendc〈0〉; halt where x is the

data whose secrecy we are interested in.

Secrecy of x is not maintained. P [M/x] and P [M ′/x] are not equivalent for

M 6= M ′.

Consider test (Q, d) where Q , sendc〈M〉; recvc(z); sendd〈0〉; halt.

P [M/x] | Q passes the test:

P [M/x] | Q
τ

−→ check (M = M); sendc〈0〉; halt | recvc(z); sendd〈0〉; halt
τ

−→

halt | sendd〈0〉; halt
d

−→ 〈0〉(halt | halt)

P [M ′/x] | Q does not pass the test.

230



Similarly, case analysis on data of class any are disallowed.

E ⊢ M : T E, x : T , y : T ⊢ P T ∈ {public, secret}

E ⊢ let (x, y) = M ;P

E ⊢ M : T E ⊢ P E, x : T ⊢ Q T ∈ {secret, public}

E ⊢ case M of 0 : P, succ (x) : Q

231



Decryption

E ⊢ L : T E ⊢ N : public E, x1 : T , . . . , xk : T ⊢ P T ∈ {secret, public}

E ⊢ case L of {x1, . . . , xk}N : P

E ⊢ L : T E ⊢ N : secret T ∈ {secret, public}

E, x1 : secret, x2 : any, x3 : public, x4 : any ⊢ P

E ⊢ case L of {x1, x2, x3, x4}N : P

The confounder x4 in the second rule is assumed to be of type any because we

have no more information about it.

232



Typing implies noleak of information

Suppose

• ⊢ E

• all variables in dom(E) are of level any and all names in dom(E) are of

level public.

• E ⊢ P

• P has free variables x1, . . . , xk

• fn(Mi), fn(M ′

i
) ⊆ dom(E) for 1 ≤ i ≤ k.

then P [M1/x1, . . . ,Mk/xk] ≃ P [M ′

1
/x1, . . . ,M

′

k
/xk]

Well typed processes maintain secrecy of the free variables (x1, . . . , xk), i.e.

they are not leaked.

233



Our previous example P , recvc(y); check (x == y); sendc〈0〉; halt

We take E , {x : any, c : public :: {c}0}. c is not meant to be used as a

confounder, hence we have the dummy term {c}0.

We have ⊢ E.

In order to show E ⊢ P we need to find some T such that

E, y : public ⊢ check (x == y); sendc〈0〉; halt.

But this is impossible because equality checks should not involve data of class

any.

Hence the process doesn’t type-check, as required.

234



Consider P , new K; new m; new n; sendc〈{m,x, 0, n}K〉; halt.

We take E , {x : any, c : public :: {c}0}. We have ⊢ E.

To show E ⊢ P we choose

E′ , E,K : secret :: {K}0,m : secret :: {m}0, n : secret :: {m,x, 0, n}K

and show that E′ ⊢ sendc〈{m,x, 0, n}K〉; halt.

This is ok because E′ ⊢ m : secret, E′ ⊢ x : any, E′ ⊢ 0 : public, E′ ⊢ n : secret,

E′ ⊢ K : secret and E′ ⊢ halt.

235


