
Java Security
The virtual machine principle:

CodeCompiler

Compiler

Interpreter

Concrete Machine

Abstract Machine

Code

Hardware

OutputInput

Input

Source Code

Abstract Machine
Code

236

Java programs: definitions of classes.

public class hello {

public static void main (String args[]) {

System.out.println (”Hello!”); } }

Compilation produces class files containing Java bytecode.

javac hello.java

produces file hello.class containing bytecodes for the class hello.

A software implementing the Java Virtual Machine (JVM) executes the

bytecodes to produce output.

java hello

237

Java programs: definitions of classes.

public class hello {

public static void main (String args[]) {

System.out.println (”Hello!”); } }

Compilation produces class files containing Java bytecode.

javac hello.java

produces file hello.class containing bytecodes for the class hello.

A software implementing the Java Virtual Machine (JVM) executes the

bytecodes to produce output.

java hello

=⇒ Portability

237-a

The sandbox principle: each application has access to a restricted set of system

resources like local files, network, etc.

JVM

system resources

sandbox 3

sandbox 1 sandbox 2

class loadersecurity policy

local or remote code, signed or unsigned

238

Java language security constructs

Each entity has an access level

Specifier Class Package Subclass World

private Yes No No No

(Default) Yes Yes No No

protected Yes Yes Yes No

public Yes Yes Yes Yes

239

Java language security constructs

Each entity has an access level

Specifier Class Package Subclass World

private Yes No No No

(Default) Yes Yes No No

protected Yes Yes Yes No

public Yes Yes Yes Yes

Not sufficient for memory integrity . . .

239-a

• No pointers: prevents access to arbitrary memory locations.

240

• No pointers: prevents access to arbitrary memory locations.

• No use of variables before initialization.

240-a

• No pointers: prevents access to arbitrary memory locations.

• No use of variables before initialization.

• Array bounds checks.

240-b

• No pointers: prevents access to arbitrary memory locations.

• No use of variables before initialization.

• Array bounds checks.

• No arbitrary casts between different classes.

public class A {private int x;}

public class B {public int x;}

...

// a is of class A

B b = (B) a;

// The above is rejected by the compiler

Object o = b; B b’ = o;

// The above is allowed by compiler but raises exception at runtime

240-c

Enforcement of the Java language rules.

• At compile time:

check typing rules, enforcement of access qualifiers, prevention of most illegal

type casts.

• At load time:

verify bytecodes when a class is loaded (prevent malicious bytecodes)

• At runtime:

raise exceptions for illegal type casts, out of bound array accesses, . . .

241

Java Class Loading and Bytecode
Verification

• Every object is a member of some class.

• The Class class: its members are the (definitions of) various classes that the

JVM knows about.

• The classes can be dynamically loaded by the JVM by reading local or

remote class files.

• Loading of classes is done by class loaders which are objects of the

ClassLoader class.

• The class loader coordinates with the security manager and the access

controller to provide the sandbox functions.

242

public class getClassTest {

public static void main (String args[]) {

String s = ”abc”;

Class c1 = s.getClass();

System.out.println (”string \”” + s + ”\” is of class ” + c1.getName());

Class c2 = c1.getClass();

System.out.println (”class ” + c1.getName() + ” is of class ” + c2.getName());

Class c3 = c2.getClass();

System.out.println (”class ” + c2.getName() + ” is of class ” + c3.getName());

}

}

243

public class getClassTest {

public static void main (String args[]) {

String s = ”abc”;

Class c1 = s.getClass();

System.out.println (”string \”” + s + ”\” is of class ” + c1.getName());

Class c2 = c1.getClass();

System.out.println (”class ” + c1.getName() + ” is of class ” + c2.getName());

Class c3 = c2.getClass();

System.out.println (”class ” + c2.getName() + ” is of class ” + c3.getName());

}

}

string ”abc” is of class java.lang.String

class java.lang.String is of class java.lang.Class

class java.lang.Class is of class java.lang.Class

243-a

An example involving dynamic class loading

import java.lang.reflect.∗;

public class runhello {

public static void main (String args[]) {

Class c = null;

Method m = null;

// First we load the required class into the JVM

try { c = Class.forName (”hello”);

} catch (ClassNotFoundException e) {

System.out.println (”The class was not found”);

};

244

// Get the main method of the class

Class argtypes[] = new Class[] { String[].class };

try { m = c.getMethod (”main”, argtypes);

} catch (NoSuchMethodException e) {

System.out.println (”The main method was not found”);

};

// Invoke the method

Object arglist[] = new Object[1];

try { m.invoke (null, arglist);

} catch (Exception e) {

System.out.println (”Error upon invocation” + e);

};

} }

Hello!

245

The forName function finds, loads and links the class specified by the name.

forName(String name, boolean initialize, ClassLoader loader)

tries to find the class specified by the name, load it using the specified class

loader and link it. The class is initialized if asked for.

forName (”hello”)

above is equivalent to

forName (”hello”, true, this.getClass().getClassLoader())

246

Security and the class loader

The security manager and access controller allow or prevent various operations

depending upon the context of the request.

This information is provided by the class loader.

The class loader has information about

• origin: where the class was loaded from

• whether the class comes from the local filesystem or from the network

• whether the class comes with a digital signature

247

• Suppose we visit a website www.site1.com which uses a class named C1.

Then we visit a second website www.site2.com which also uses a class C1.

How to distinguish between the two classes?

• Worse, www.site2.com could be untrusted and provide some malicious code

in class C1

• A class loaded from an untrusted site should not be put in the same

package as a class loaded from a trusted site.

248

Each class loader defines a name space.

All classes loaded by particular class loader belong to its name space.

class loader cl1 class loader cl2

C1 C1 . . .

C2 C3

. . .

Web-browsers typically create different class loaders for loading classes from

different sites.

Hence classes from different sites can be put in different name spaces.

Hence the class C1 provided by www.site1.com is different from the class C1

provided by www.site2.com.

249

If class C1 from a particular name space needs a class C2, then the associated

class loader is looked up.

The class loader associated with that namespace provides the required class C2.

Hence the class C2 provided will be from the same namespace.

In this way, name spaces provide a way to prevent untrsuted classes from

accessing trusted classes.

A class from an untrusted site cannot pretend to be a trusted class from the

java API.

250

Hierarchy of class loaders

• The bootstrap class loader (primordial class loader, internal class loader) is

responsible for loading a few initial classes when the JVM is launched.

• All new user defined class loaders have a parent class loader.

bootstrap class loader

class loader 2class loader 1

class loader 3 class loader 4

251

Typical class loading mechanism

1. return already existing class object, if found

2. ask the security manager for permission to access this class

3. attempt to load the class using the parent class loader

4. ask the security manager for permission to create this class

5. read the class file into an array of bytes

6. perform bytecode verification

7. create the class object

8. resolve the class

252

Using a class loader

Class loaders are members of (subclasses of) the abstract ClassLoader class.

Classes are loaded using the loadClass function of class loaders:

protected Class loadClass (String name, boolean resolve)

where name is the name of the class, and resolve tells us whether the class

should be resolved or not.

Typically new classes of class loaders are defined by extending standard ones

like SecureClassLoader or URLClassLoader.

253

Defining a new class of class loader

Either extend ClassLoader or one of its subclasses.

import java.net.∗;

// a trivial extension of URLClassLoader

public class myClassLoader extends URLClassLoader {

myClassLoader (URL url) { super (new URL[] {url}); }

protected Class loadClass (String name, boolean resolve) {

Class c = null;

try { c = super.loadClass(name, resolve);

} catch (ClassNotFoundException e) { System.out.println (”Class not found”); }

return c;

}

}

254

Using a class loader

import java.lang.reflect.∗;

import java.net.∗;

public class runClass {

public static void main (String args[]) {

// Create a class loader

URL url = null;

try { url = new URL (”file:/home/userxyz/classes”);

} catch (MalformedURLException e) { }

myClassLoader cl = new myClassLoader(url);

255

Class c = null; Method m = null;

c = cl.loadClass (args[0]); // Load the class

//Compute the argument vector and invoke the main method

Class argtypes[] = new Class[] { String[].class };

try { m = c.getMethod (”main”, argtypes); } catch (NoSuchMethodException e) {

System.out.println (”The main method was not found”); };

Object arglist[] = new Object[1];

arglist[0] = new String[args.length − 1];

for (int i=0; i < args.length − 1; i++) ((String[])arglist[0])[i] = args[i+1];

try { m.invoke (null, arglist); } catch (Exception e) {

System.out.println (”Error upon invocation” + e); };

}

}

256

Java Bytecode Verification

Static analysis of the bytecodes to ensure security properties like

• operations follow typing rules

• no illegal casts

• no conversion from integers to pointers

• no calling of directly private methods of another class

• no jumping into the middle of a method

• no confusion between data and code

257

The JVM

• Stack based abstract machine: operations pop arguments and push results

• A set of registers, typically used for local variables and parameters:

accessed by load and store instructions

• Stack and registers are preserved across method calls

• For each method, the number of stack slots and registers is specified in the

bytecode

• unconditional, conditional and multiway (switch) intra-procedural branches

• Exception handlers table of entries (pc1, pc2, C, h): if exception of class C is

raised between locations pc1 and pc2, then handler is at location h.

• Most JVM instructions are typed.

258

Example bytecode

The source code:

public class test {

public static int factorial (int n) {

int res;

for (res = 1; n > 0; n−−) res = res ∗ n;

return res;

}

}

and the JVM bytecode (shown by running javap on the class file). . .

259

...

public static int factorial (int); 2 stack slots , 2 registers

0: iconst 1 // push integer constant 1

1: istore 1 // store it in register 1 (res)

2: iload 0 // push register 0 (n)

3: ifle 16 // if negative or zero, goto 16

6: iload 1 // push register 1 (res)

7: iload 0 // push register 0 (n)

8: imul // multiply

9: istore 1 // store in register 1 (res)

10: iinc 0, −1 // increment register 0 (n) by -1

13: goto 2 // goto beginning of loop

16: iload 1 // load register 1 (res)

17: ireturn // return this value

...

260

Some properties to be verified

• Type correctness: the arguments of an instruction are always of the right

type.

• No stack overflow or underflow

• Code containment: the PC points within the code for the method, at the

beginning of an instruction

• Register initialization before use

• Object initialization before use

Minimize runtime checks =⇒ efficient execution

261

Verification idea: type level abstract interpretation

Use types as the abstract values.

The partial ordering ⊑ on types is the subtype relation.

Hence for example C ⊑ D ⊑ Object if class C extends class D.

We introduce special types Null and ⊤ to abstract null pointers and

uninitialized values. Also T ⊑ ⊤ for every T .

An abstract stack S is a sequence of types.

The sequence S = Int · Int · String abstracts a stack having a string at the

bottom of the stack and just two integers above it.

262

An abstract register assignment R maps registers to types.

R : {0, . . . ,Mreg − 1} → T

where Mreg is the maximum number of registers and T is the set of types.

An abstract state is either ⊥ (unreachable state) or (S,R) where S is an

abstract stack and R is an abstract register assignment.

263

