Evaluation: the TAL-0 abstract machine
e the abstract machine contains the code and data.

e an evaluation step changes the state (code and data) of the abstract machine.

e A register file R maps each register r to some value (integer or label) R(r).
R:o={rl—uvy,...,rtk— v}

(each v; is a value)

e For TAL-0, the only heap values are instruction sequences.
ho=1

Extensions of TAL-0 will need to consider other kinds of heap values.

280

e A heap H is a partial map: H maps some labels [to heap values H(l).
H .= {ll — hl,...lm — hm}

An abstract machine state consists of a heap, a register file and the current

sequence being executed.
M = (H,R,I)

281

The previous example has three instruction sequences

I =r3:=0;r2:=rl; jump loop
Io = if rl jump done;r3 :=r2+r3;rl :=rl 4+ —1; jump loop
I3 = jump r4

We have the heap Hy = {prod — Iy, loop — I5,done — I3}.

The starting state of the machine is supposed to be of the form
MO — (H07 R07 Il)

where Ry(rl) = n is an integer and Ry(r4) is a label.

A possible execution sequence: ...

282

{rl— 2,
{rl— 2,
{rl — 2,
{rl — 2,
{rl— 2,
{rl— 2,
{rl —1,
{rl —1,
{rl —1,
{rl —1,
{rl—0,
{rl—0,
{rl — 0,

r2 — 0,
r2 — 0,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,
r2 — 2,

r2 — 2,

r3 +— 0,
r3 — 0,

r3 +— 0
r3 +— 0
r3 +— 0
r3 — 2
r3 — 2
r3 — 2
r3 — 2
r3 — 4
r3 — 4
r3 — 4
r3 — 4

rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},
rd — 1},

Iy
r2 :=rl; jump loop
jump loop
I
r3:=r24+r3;rl :=rl+ —1; jump loop
rl:=rl+4+ —1; jump loop
jump loop
I2
r3:=r24+r3;rl :=rl+ —1; jump loop
rl :=rl+ —1; jump loop
jump loop
I
jump r4

283

As usual, we formalize this using evaluation rules.

284

As usual, we formalize this using evaluation rules.

HRWw)) =1
(H,R, jumpv) — (H,R,I)

(E-Jump)

where the lookup function R returns the value corresponding to an operand:
(r)=R(r)
R(n)=n
R(1)=l
The JUMP instruction loads a new instruction sequence which should then be
executed.

The machine is stuck if R(v) is not a label, or if the label does not correspond

to some instruction sequence in the heap.

284-a

Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R,rq:=v;1) — (H,R® {rq — RW)}, I (E-Mov)

285

Otherwise, we consume one instruction from the current instruction sequence.

The MOV and ADD instructions modify the register file.

(H,R,rq :=v;1) — (H,R® {rq — R(w)},I) (E-Mov)

R(rs) = ny R(V) = N9

(E-Add)
(H,R,rg:=rs+v;l)— (H, R®{rqg— ni +no},I)

A

(The machine is stuck in the second case if R(rs) or R(v) is not an integer.)

285-a

The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(ry=0 H(Rw) =TI
(H,R,if r jump v;I) — (H,R, I

(E-IfEq)

286

The conditional jump instruction either loads a new instruction sequence or

just consumes one instruction.

R(ry=0 H(Rw) =TI
(H,R,if r jump v;I) — (H,R, I

(E-IfEq)

R(r)=n n # 0
(H,R,if r jump v; 1) — (H, R, 1)

(E-IfNeq)

(The machine is stuck if R(r) is not an integer or, in the first case, if R(v) is
not a label.)

286-a

Consider the following simple code:

|: rl:=5b;
jump rl

287

Consider the following simple code:

|: rl:=5b;
jump rl

Define instruction sequence I =rl :=5; jump rl and heap H = {l — I}.

Corresponding to the above code, starting with register file R = {rl — 0} we

have the evaluation step
(H, {rl = 0}, I) —> (H,{rl > 5}, jump r1)

287-a

Consider the following simple code:

|: rl:=5b;
jump rl

Define instruction sequence I =rl :=5; jump rl and heap H = {l — I}.

Corresponding to the above code, starting with register file R = {rl — 0} we

have the evaluation step
(H, {rl = 0}, I) —> (H,{rl > 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because rl

stores an integer instead of a label.

287-b

Consider the following simple code:

|: rl:=5b;
jump rl

Define instruction sequence I =rl :=5; jump rl and heap H = {l — I}.

Corresponding to the above code, starting with register file R = {rl — 0} we

have the evaluation step
(H, {rl = 0}, I) —> (H,{rl > 5}, jump r1)

The machine is now stuck: no further evaluation step is possible because rl

stores an integer instead of a label.

Hence to filter out such bad programs, we need to introduce typing rules.

287-c

Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.

In the previous example, we will start with the register file type I' = {rl : Int}.

After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump rl fails to type check because I'(rl) is Int

instead of Code.

Hence the code is rejected, as desired.

288

Initial idea for a TAL-0 typing system: introduce two different types Int and

Code for integers and labels.
In the previous example, we will start with the register file type I' = {rl : Int}.
After the instruction r1 = 5 the register file type remains the same.

Then the second instruction jump rl fails to type check because I'(rl) is Int

instead of Code.
Hence the code is rejected, as desired.

Is this idea enough?

288-a

Consider the following code:

|: rl:=5b;
r2 =1
jump r2

Label I’ points to some other instruction sequence I’.

I=rl1:=5r2:=V; jumpr2 and heap H = {l : I,I' — I'}.

Should the above code be well-typed? After the first two instructions, the
register file type will be {rl : Int,r2 : Code}, as it should be.

Answer: depends on I'...

289

Consider the code
" -

jump rl;

Clearly the instruction sequence I’ = jump rl expects a label in rl instead of

an integer.

Hence the code at | is not well-typed.

Solution:

With each instruction sequence, associate a register file type that is expected

at the beginning of that instruction sequence.

Secondly, enrich the notion of types. Instead of having a simple type Code for
labels, we have types of the form Code(I') where I' is a register file type.

290

We further choose a type Top which is the super type of all types.

In the previous example, the instruction sequence I’ will have type

{rl : Code{rl : Top,r2: Top}}

The instruction sequence I’ expects rl to contain label to some instruction

sequence (I) which expects both registers to contain ”anything”.
The instruction sequence I has type {rl : Top,r2 : Top}.

After executing the first two instructions of I, the register file type becomes
{r1:Int,r2 : Code{...}.

Hence the jump instruction doesn’t type check.

291

The TAL-0 type system

T = operand types
Int integers
Code(I") labels
Top Tany’ type

292

The TAL-0 type system

T = operand types
Int integers
Code(I") labels
Top "any”’ type

{rl:7,...

{11:7'1,...

register file types
rk T}
heap types

alm . Tm}

292-a

The TAL-0 type system

T = operand types
Int integers
Code(I") labels
Top "any”’ type

Typing of operands
The type judgment

v.I'Fv:T

register file types
{rl:om,. .o rk: 7}
heap types

{li 71, b T }

means: under heap type ¥ and register file type I', the operand v has type 7.

292-b

The TAL-0 type system

T = operand types
Int integers
Code(I") labels
Top "any”’ type

Typing of operands
The type judgment

v.I'Fv:T

register file types
{rl:om,. .o rk: 7}
heap types

{li 71, b T }

means: under heap type ¥ and register file type I', the operand v has type 7.

U I'tn:Int (T-Int)

292-c

The TAL-0 type system

T = operand types
Int integers
Code(I") labels
Top "any”’ type

Typing of operands
The type judgment

v.I'Fv:T

register file types
{rl:om,. .o rk: 7}
heap types

{li 71, b T }

means: under heap type ¥ and register file type I', the operand v has type 7.

U I'tn:Int (T-Int)

[:T7e W

(T-Lab)

v.I'kEl:7

292-d

U I'Fr:T(r) (T-Reg)

293

U I'Fr:T(r) (T-Reg)

v I'bFv:r "Cr

\]

—— (T-Sub)

~

Uv.I'Fv:T

293-a

U I'kr:T(r) (T-Reg)

V. I'tv:T ' Cr
/ (T-Sub)
v I'Fv:r
where
T 7 for every 7
T 1 Top for every 7

Code(I';) LE Code(I'y) iff I'y(r) Eq I's(r) for every register r

Top represents "any”’ type, hence can be replaced by any type.

293-b

Typing of instructions

The type judgment

Uky: Fl — F2
means: under heap type W, the instruction : modifies the register file type from
Fl to FQ.

294

Typing of instructions
The type judgment
UkEe: T —1
means: under heap type W, the instruction : modifies the register file type from
Fl to FQ.

Uv.I'Fv:T
UbErg=v: I =T & {ry: 7}

(T-Mov)

294-a

Typing of instructions

The type judgment

Uky: Fl — F2
means: under heap type W, the instruction : modifies the register file type from
Fl to FQ.

Uv.I'Fv:T

(T-Mov)
UbErg=v: I =T & {ry: 7}

U.I'Frs:Int U.I'Fv:Int
UkErgi=rs+v:I' ->T&{ry:Int}

(T-Add)

The mov and add instructions modify the type of the destination register.

294-b

U I'Frg:Int U I'Fv: Code(T)

—— (T-If)
UEifrgjumpr:I' =T

Both branches of the if instruction must have the same type.

If the if condition fails then the next instruction is executed with register file

of type I'.

If the if condition succeeds then the jump should be to some instruction

sequence which expects register file type I'.

295

Typing of instruction sequences

The type judgment
W : T : Code(l')
means: under heap type W, the instruction sequence I expects the register file

to have type I' at the beginning.

296

Typing of instruction sequences

The type judgment
W : T : Code(l')
means: under heap type W, the instruction sequence I expects the register file

to have type I' at the beginning.

U T'Fv: Code(T)

. (T-Jump)
U F jump v : Code(I')

296-a

Typing of instruction sequences
The type judgment
W : T : Code(l')
means: under heap type W, the instruction sequence I expects the register file

to have type I' at the beginning.

U T'Fv: Code(T)
U F jump v : Code(I')

(T-Jump)

\Pl_L:F1—>F2 \Ifl_]ZCOdE(FQ)
Uk ;1 : Code(I'y)

(T-Seq)

296-b

Typing of register files, heaps, and machine states

U, _F R(rl) : T'(r1) . U, _F R(rk) : I'(rk)
vhH-R:T
_means that the register file type is irrelevant here

(T-Regfile)

297

Typing of register files, heaps, and machine states

U, _F R(rl) : I'(r1) . U, _F R(rk) : T'(rk)
vHER:T
_means that the register file type is irrelevant here

(T-Regfile)

Viedom(W) - Wk H():Y()
- H: W
dom (W) is the set of labels in the domain of W

(T-Heap)

297-a

Typing of register files, heaps, and machine states

U, _F R(rl) : I'(r1) . U, _F R(rk) : T'(rk)
vHER:T
_means that the register file type is irrelevant here

(T-Regfile)

Viedom(W) - Wk H():Y()
- H: W
dom (W) is the set of labels in the domain of W

(T-Heap)

- H: W UVER:T U T : Code(T)
- (H, R, 1)

(T-Mach)

The last judgment means that (H, R, I) is a well-typed machine.

297-b

Example

\ .

l:rl:=1;r2:=1"; jump r2 " jump rl

I/
We have the heap H = {l — I[,I" — I'}.

()
| : Code{rl : Top,r2: Top},
Define heap type ¥ = < 0

" : Code{rl : W(l),r2: Top} }

\

'y ={rl: Top,r2: Top}
Define register file types T'g = {r1: ¥(l),r2 : Top}
[y ={rl:¥(l),r2: (")}

298

claim 1: Wt I : Code(I'y)

299

claim 1: Wt I : Code(I'y)

| : Code{rl : Top,r2: Top} € ¥

(T-Lab)

U, Ty -1 0(l) o)

UikErl:.=| IF1—>F2

299-a

claim 1: Wt I : Code(I'y)

| : Code{rl : Top,r2: Top} € ¥

(T-Lab)

Uy 1:w(l) /
(T-Mov) UkEr2:=1:T'y —=1TI45

UikErl:.=| IF1—>F2

299-b

claim 1: Wt I : Code(I'y)

| : Code{rl : Top,r2: Top} € ¥

(T-Lab) .
U Iy F 1wl :
(T-Mov) U= :Ty — I3
UErl:=| IF1—>F2
\IJ,F3|_F2Z\IJ|/ COdGFg E\IJV
) Codery Sty o
\If,rg Fr2: COde(Fg)
(T-Jump)

U jump r2 : Code(I's)

Code(I's) = Code{rl: ¥(l), r2:¥(")}
C U(l') = Code{rl : W(l), r2: Top}
because V(1) £ ¥(l) and ¥(I') =1 Top.

299-c

) v:r2:= |/ . FQ — Fg v - Jump 2 : COde(Fg)
Ukrl:=I1:T'y — 1% Ut r2:=1; jump r2: Code(I's)
U I : Code(I')

(T-Seq)
(T-Seq)

This proves claim 1.

300

) v:r2:= |/ . FQ — Fg v - Jump 2 : COde(Fg)
Ukrl:=I1:T'y — 1% Ut r2:=1; jump r2: Code(I's)
U I : Code(I')

(T-Seq)

(T-Seq)

This proves claim 1.

claim 2: W I’ : Code(I's)

U ok rl:W(l) Code(T'y) E W(l)
\IJ,FQ Frl: COde(Fg)
U jump rl: Code(I's)

(T-Sub)
(T-Jump)

300-b

Well typing of the heap
Recall that H = {l — I,I' — I'} and W = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(ls)
- H W

(T-Heap)

301

Well typing of the heap
Recall that H = {l — I,I' — I'} and W = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(ls)
- H W

(T-Heap)

Well typing of register file

Suppose we want to start running the machine with the register file

R={rl —0,r2+— 0}

301-a

Well typing of the heap
Recall that H = {l — I,I' — I'} and W = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(ls)
- H W

(T-Heap)

Well typing of register file
Suppose we want to start running the machine with the register file

R={rl —0,r2+— 0}
Define register file type I'= {rl :Int,r2 : Int}

301-b

Well typing of the heap
Recall that H = {l — I,I' — I'} and W = {l : Code(I'1),l" : Code(I'2)}.

Uk I:Code(ly) Wk I': Code(ls)
- H W

(T-Heap)

Well typing of register file

Suppose we want to start running the machine with the register file

R={rl —0,r2+— 0}
Define register file type I'= {rl :Int,r2 : Int}

(T-Int) (T-Int)
U, _F0:Int v,_F0:Int
(TRegfile)

UvVHER:T

301-c

Suppose the initial instruction sequence we want to execute is /.

We have shown that W F I : Code(I';) (claim 1).
Similarly we show W F I : Code(T).

302

Suppose the initial instruction sequence we want to execute is /.

We have shown that W F I : Code(I';) (claim 1).
Similarly we show W F I : Code(I).

Finally, well typing of the machine

FH:U WUFR:T Wk I:Code(l)
- (H,R,T)

(T-Mach)

302-a

Following instruction sequences are rejected by our type system.
11:r1:=12;r2 :=r14+1;...

13:rl:=5; jumprl

303

Following instruction sequences are rejected by our type system.
11:r1:=12;r2 :=r14+1;...
13:rl:=5; jumprl

e We haven’t discussed how to check if a machine is well typed. Alternative:

use proof carrying code.

303-a

Following instruction sequences are rejected by our type system.
11:r1:=12;r2 :=r14+1;...
13:rl:=5; jumprl

e We haven’t discussed how to check if a machine is well typed. Alternative:

use proof carrying code.

e [t is straightforward to translate TAL-0 programs to code for some real

processor.

If the TAL-0 program is well-typed then the translated code will behave
properly.

303-b

Following instruction sequences are rejected by our type system.
11:r1:=12;r2 :=r14+1;...
13:rl:=5; jumprl

e We haven’t discussed how to check if a machine is well typed. Alternative:

use proof carrying code.

e [t is straightforward to translate TAL-0 programs to code for some real

processor.

If the TAL-0 program is well-typed then the translated code will behave
properly.
... for that we of course need to prove type safety for TAL-0 ...

303-c

Type safety for TAL-0

"well typed machines do not get stuck”

Progress: If = M then there is some M’ such that M — M.

Preservation: If H M and M — M’ then - M.

304

