
An extension: TAL-1

We now also deal with memory safety.

Besides registers, we now have a potentially infinite memory, stack, pointers,

and facilities for allocating space for data.

Already expressive enough for implementing simple programs from high level

languages.

Memory safety: no reads to or writes from illegal memory locations.

305

Examples of new kinds of instructions

• r1 := Mem[r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in r1.

306

Examples of new kinds of instructions

• r1 := Mem[r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in r1.

• Mem[r2 + 4] := r1

The reverse store operation.

306-a

Examples of new kinds of instructions

• r1 := Mem[r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in r1.

• Mem[r2 + 4] := r1

The reverse store operation.

• r1 := malloc 10

allocate 10 words on the heap, and store corresponding pointer in r1.

306-b

Examples of new kinds of instructions

• r1 := Mem[r2 + 4]

r2 stores a pointer. We access the 4th location past the corresponding

memory location. The value there is loaded in r1.

• Mem[r2 + 4] := r1

The reverse store operation.

• r1 := malloc 10

allocate 10 words on the heap, and store corresponding pointer in r1.

• salloc 10

allocate 10 words on the stack (and update stack pointer)

306-c

Example code.

r1 := malloc 5; // allocate 5 words on heap

Mem[r1] := 10; // store data in the first word

Mem[r1 + 1] := 20; // store data in the first word

r2 := Mem[r1] // load 10 into r2

307

Example code.

r1 := malloc 5; // allocate 5 words on heap

Mem[r1] := 10; // store data in the first word

Mem[r1 + 1] := 20; // store data in the first word

r2 := Mem[r1] // load 10 into r2

The following code has no well-defined behavior.

r1 := malloc 5; // allocate 5 words on heap

r2 := malloc 5; // allocate 5 words on heap

r3 := r1 + r2 // add the two pointers

307-a

Example code.

r1 := malloc 5; // allocate 5 words on heap

Mem[r1] := 10; // store data in the first word

Mem[r1 + 1] := 20; // store data in the first word

r2 := Mem[r1] // load 10 into r2

The following code has no well-defined behavior.

r1 := malloc 5; // allocate 5 words on heap

r2 := malloc 5; // allocate 5 words on heap

r3 := r1 + r2 // add the two pointers

Hence for type safety, we should at least have a different type for pointers.

307-b

Further the type system should distinguish between pointers to different types

of data.

r1 := malloc 5;

Mem[r1] := 9;

r2 := Mem[r1] // r1 stores a pointer, hence this is ok

jump r2 // not ok, since r1 was a pointer to an integer

Hence the type-system should deal with types like ptr(Int), ptr(Code(Γ)),

ptr(ptr(Int)), . . .

308

// currently r1 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r1]; // r4 : Int

jump r4 // of course ill-typed

Hence type of a register should be updated after a store through it.

309

Aliasing problem

Should the following be well typed?

// currently r1 : ptr(Code(. . .)), r2 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r2]; // load through r2. r4 :???

jump r4 // is this well-typed???

310

Aliasing problem

Should the following be well typed?

// currently r1 : ptr(Code(. . .)), r2 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r2]; // load through r2. r4 :???

jump r4 // is this well-typed???

Answer: depends on whether r1 and r2 point to the same location (aliasing).

310-b

Aliasing problem

Should the following be well typed?

// currently r1 : ptr(Code(. . .)), r2 : ptr(Code(. . .))

r3 := 5;

Mem[r1] := r3; // now r1 : ptr(Int)

r4 := Mem[r2]; // load through r2. r4 :???

jump r4 // is this well-typed???

Answer: depends on whether r1 and r2 point to the same location (aliasing).

Problem: how should the type system keep track of aliasing?

310-c

Solution: have two kinds of memory locations.

Shared pointers: support aliasing. Different type of data cannot be written.

Unique pointers: no aliasing. Different kind of data can be written. Useful for

allocating and initializing shared data structures, and for stack frames.

The instruction

commit rd

declares a pointer to be shared, its type cannot change now.

311

The TAL-1 syntax: we make the following extensions to the TAL-0 syntax.

r ::= registers

r1 | . . . | rk | sp ordinary registers and stack pointer

ι ::= instructions

. . . mov/add/if-jump

rd := Mem[rs + n] load from memory

Mem[rd + n] := rs store to memory

rd := malloc n allocate n heap words

commit rd make the pointer shared

salloc n allocate n stack words

sfree n free n stack words

312

ν ::= operands

r registers

n integers

l code or shared data pointers

uptr(h) unique data pointers

h ::= heap values

I instruction sequences

〈ν1, . . . , νn〉 tuples

Instr. sequences I are as in TAL-0: list of instructions followed by a jump

Values are operands other than registers. Heaps map labels l to heap values h.

Register files and abstract machine states are defined as for TAL-0.

313

The TAL-1 abstract machine: Unique data values are not stored in the heap.

uptr

Stack

sp r1 r2 r3 r4 r5

uptr uptr

Heap

... code ...

15

10
5

...

10

l1
l2

l3

l4

l5

l6l1

l1

314

TAL-1 evaluation rules

We fix a constant MaxStack: the maximum allowed size of the stack.

All TAl-0 evaluation rules remain the same except the (E-Mov) rule.

This rule now needs to ensure that unique pointers are not copied.

R̂(ν) 6= uptr(h)
(E-Mov1)

(H,R, rd := ν; I) → (H,R ⊕ {rd 7→ R̂(ν)}, I)

The R̂ function is as for TAL-0. Further we have R̂(uptr(h)) = uptr(h).

If R̂(ν) is uptr(h) then the machine gets stuck.

315

TAL-1 evaluation rules

We fix a constant MaxStack: the maximum allowed size of the stack.

All TAl-0 evaluation rules remain the same except the (E-Mov) rule.

This rule now needs to ensure that unique pointers are not copied.

R̂(ν) 6= uptr(h)
(E-Mov1)

(H,R, rd := ν; I) → (H,R ⊕ {rd 7→ R̂(ν)}, I)

The R̂ function is as for TAL-0. Further we have R̂(uptr(h)) = uptr(h).

If R̂(ν) is uptr(h) then the machine gets stuck.

The other evaluation rules of TAL-0 are unmodified. We now add new rules for

the new instructions . . .

315-a

Allocation generates a unique pointer

(H,R, rd := malloc n; I) → (H,R ⊕ {rd 7→ uptr〈m1, . . . ,mn〉}, I) (E-Malloc)

• A unique pointer to a tuple of n words is created and stored in the

destination register.

• The initial values in the words are arbitrary integers m1, . . . ,mn

(uninitialized values)

• Typically we would make the pointer shared once the words have been

initialized.

• malloc instruction takes a constant as argument. Useful for implementing

tuples, records, etc but not yet for variable sized arrays.

316

Allocation

sp r1 r2 r3 r4 r5

Heap Heap

sp r1 r2 r3 r4 r5

uptr

...

r2 := malloc 4

5

2

17

100

317

Examples The following code will lead to stuck states.

• copying of unique pointers:

. . . r1 := malloc 5; r2 := r1; . . .

• using unique pointers in place of integers

. . . r1 := malloc 5; if r1 jump l; . . .

318

Declaring a pointer to be shared

rd 6= sp R(rd) = uptr(h) l /∈ dom(H)
(E-Commit)

(H,R, commit rd; I) → (H ⊕ {l 7→ h}, R ⊕ {rd 7→ l}, I)

• The stack is always a unique data value.

• commit moves the unique data in the heap (i.e. it is now considered

shared data)

• A fresh label is associated with the data and is stored in the destination

register.

319

5

...

uptr

sp r1 r2 r3 r4 r5

Heap

sp r1 r2 r3 r4 r5

Heap

commit r2

5

...

l

l is a completely fresh label.

320

Loading and storing

Loading shared data

R(rs) = l H(l) = 〈ν0, . . . , νn, . . . , 〉
(E-Ld-S)

(H,R, rd := Mem[rs + n]; I) → (H,R ⊕ {rd 7→ νn}, I)

321

Loading and storing

Loading shared data

R(rs) = l H(l) = 〈ν0, . . . , νn, . . . , 〉
(E-Ld-S)

(H,R, rd := Mem[rs + n]; I) → (H,R ⊕ {rd 7→ νn}, I)

Loading unique data

R(rs) = uptr〈ν0, . . . , νn, . . . , 〉
(E-Ld-U)

(H,R, rd := Mem[rs + n]; I) → (H,R ⊕ {rd 7→ νn}, I)

321-a

Loading shared data

sp r1 r2 r3 r4 r5

Heap

5

...

l

10

...

sp r1 r2 r3 r4 r5

Heap

5

...

10

10r1 := Mem[r2 + 2]

l

322

Loading unique data

5

...

10

5

...

uptr

sp r1 r2 r3 r4 r5

Heap

10

...

Heap

r1 := Mem[r2 + 2]

sp r1 r2 r3 r4 r5

10

uptr

323

Storing shared data

R(rd) = l H(l) = 〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-S)

(H,R,Mem[rd + n] := rs; I) → (H ⊕ {l 7→ 〈ν0, . . . , ν, . . . , 〉}, R, I)

324

Storing shared data

R(rd) = l H(l) = 〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-S)

(H,R,Mem[rd + n] := rs; I) → (H ⊕ {l 7→ 〈ν0, . . . , ν, . . . , 〉}, R, I)

Storing unique data

R(rd) = uptr〈ν0, . . . , νn, . . . , 〉 R(rs) = ν ν 6= uptr(h)
(E-St-U)

(H,R,Mem[rd + n] := rs; I) → (H,R ⊕ {rd 7→ uptr〈ν0, . . . , ν, . . . , 〉}, I)

324-a

Storing shared data

sp r1 r2 r3 r4 r5

Heap

5

l

sp r1 r2 r3 r4 r5

Heap

5

10

l

Mem[r2 + 2] := r1

10

... ...

... ...107

325

Storing unique data

5

uptr

sp r1 r2 r3 r4 r5

Heap Heap

sp r1 r2 r3 r4 r5

10

uptr

Mem[r2 + 2] := r1

10

7

...

5

10
...

...
...

326

Example Allocating space, initializing data, and making it shared.

l : r1 := malloc 3;

r3 := l;

r4 := 7;

Mem[r1] = r3;

Mem[r1 + 1] = r4;

commit r1;

r2 := r1; // now the pointer can be aliased

r4 := r4 + 6;

Mem[r2 + 1] := r4; // this is ok (should be well-typed)

Mem[r2 + 1] := r3; // this is not ok

327

This is also ok.

l : r1 := malloc 3;

r3 := l;

r4 := 7;

Mem[r1] = r4; //r1 : uptr(Int, . . .)

Mem[r1] = r3; //r1 : uptr(Code(. . .), . . .)

. . .

commit r1;

Type of data can change before being declared to be shared.

328

Allocation on the stack

R(sp) = uptr〈ν0, . . . , νp〉 p + n ≤ MaxStack
(E-Salloc)

(H,R, salloc n; I) → (H,R ⊕ {sp 7→ uptr〈m1, . . . ,mn, ν0, . . . , νp〉}, I)

• The stack is a unique data.

• Instead of allocating a new tuple, we extend the existing stack

• Arbitrary integers (uninitialized values) are added at the top of the stack.

• Stack overflow leads to stuck state.

• positive indexing for stack as for other data tuples.

329

Deallocating space from the stack

R(sp) = uptr〈ν′

1, . . . , ν
′

n, ν0, . . . , νp〉
(E-Sfree)

(H,R, sfree n; I) → (H,R ⊕ {sp 7→ uptr〈ν0, . . . , νp〉, I)

• Stack underflow leads to a stuck state: the stack should have at least n

elements before the sfree instruction.

330

5

uptr

sp r1 r2 r3 r4 r5

10

7

...

sp r1 r2 r3 r4 r5

10

uptr

sp r1 r2 r3 r4 r5

10

uptr

salloc 2

... ...

5 5

17

38

...

... ...
7 7

Mem[sp + 1] := r1

10

38

331

• No call/return instructions in the language.

• These are simulated using the jump instruction: e.g. saving/restoring

return addresses are done explicitly.

• Allows modifications in calling conventions (passing arguments and return

address on stack or in registers, tail recursion, . . .)

• For this we focus on a more primitive set of type constructors.

• In contrast, the JVM language has notions of procedures and procedure

calls hardwired into the language. Any modification (e.g. adding tail

recursion) requires modifications in the abstract machine and the type

system.

332

Translations from high level languages to TAL-1

TAL-1 is expressive enough to implement simple subsets of high level

languages.

Example C Code

int fib (int x) {

if (x == 0) return 0; else

if (x == 1) return 1; else

return (fib (n−1) + fib (n−2));

}

333

We choose the following calling conventions for our example.

• Caller pushes arguments on the stack.

• Caller puts return address in r3.

• Callee pops arguments from the stack.

• Callee returns the result in r1.

• Register r2 is freely available for intermediate computations.

334

fib : r2 := Mem[sp]; // r2 := x

if r2 jump ret0;

r2 := r2 + −1; // r2 := x − 1

if r2 jump ret1;

salloc 2;

Mem[sp + 1] := r3; // save old return address

Mem[sp] := r2; // push x − 1 on stack

r3 := cont1; // new return address

jump fib // r1 := fib(x − 1)

335

ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

ret1 : r1 := 1;

sfree 1;

jump r3

336

ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

ret1 : r1 := 1;

sfree 1;

jump r3

cont1 : salloc 2;

Mem[sp + 1] := r1; // save fib(x − 1)

r2 := Mem[sp + 3]; // r2 := x

r2 := r2 + −2; // r2 := x − 2

Mem[sp] := r2; // push x − 2 on stack

r3 := cont2; // push return address

jump fib // r1 = fib(x − 2)

336-a

cont2 : r2 := Mem[sp]; // r2 := fib(x − 1)

r1 := r1 + r2; // r1 := fib(x − 2) + fib(x − 1)

r3 := Mem[sp + 1]; // restore old return address

sfree 3;

jump r3

337

Towards a TAL-1 type system

How to distinguish ”good” programs from ”bad” programs?

As discussed, we need types

uptr(σ) unique pointer type

ptr(σ) shared pointer type

where σ is an allocated type, i.e. type for allocated data.

The instruction r1 := malloc 3 makes the register r1 to be of type

uptr〈Int, Int, Int〉.

The instruction commit r2 transforms the type of register r2 from uptr(σ) to

ptr(σ).

338

Consider the fib example again.

Initially sp should point to a stack having Int at the top.

However the rest of the stack could be arbitrarily large and have elements of

arbitrary type.

339

Consider the fib example again.

Initially sp should point to a stack having Int at the top.

However the rest of the stack could be arbitrarily large and have elements of

arbitrary type.

First idea: use a type similar to Top, to represent tuples of ”any” type.

Further this should type should also represent tuples of any length.

Suppose we choose a type Top′ for this.

339-a

Then fib would expect sp to have type 〈Int,Top′〉, representing a stack with an

integer at the top and any number of other things below.

Hence we should expect:

fib : Code{sp : uptr〈Int,Top′〉, r1 : Top, r2 : Top, r3 : Code(Γ)}.

What should be Γ?

At the end of computation, we have r1 : Int, sp : uptr(Top′), and we jump to the

label l contained in r3.

Hence we should expect:

Γ = {sp : uptr(Top′), r1 : Int, r2 : Top, r3 : Top}.

340

Then fib would expect sp to have type 〈Int,Top′〉, representing a stack with an

integer at the top and any number of other things below.

Hence we should expect:

fib : Code{sp : uptr〈Int,Top′〉, r1 : Top, r2 : Top, r3 : Code(Γ)}.

What should be Γ?

At the end of computation, we have r1 : Int, sp : uptr(Top′), and we jump to the

label l contained in r3.

Hence we should expect:

Γ = {sp : uptr(Top′), r1 : Int, r2 : Top, r3 : Top}.

But we are forgetting the relationship between the types of values on the stack

at the beginning and at the end!

340-a

Solution: use type variables to state such equalities.

Hence with fib we will associate the type

∀s · Code{sp : uptr〈Int, s〉, r1 : Top, r2 : Top,

r3 : Code{sp : uptr(s), r1 : Int, r2 : Top, r3 : Top}}

where s is an allocated type variable i.e. representing an arbitrary length of

allocated memory.

This expresses the constraint that the code pointed to by r3 should expect the

same type of stack that is below the argument of fib.

The universal quantifier helps to distinguish occurrences of the variable s

elsewhere.

341

