
The TAL-1 type system

τ ::= operand types

Top | Int | Code(Γ)

| ptr(σ) shared pointer types

| uptr(σ) unique pointer types

| ∀ρ · τ quantification over allocated types

σ ::= allocated types

ǫ empty tuple type

τ one operand

〈σ1, σ2〉 pair

ρ allocated type variable

342



operand types are for operands and allocated data types are for tuples.

As before register file types Γ are of the form {sp : τ , r1 : τ1, . . . , rk : τk} where

τ , τi are operand types.

Similarly heap types Ψ map labels to operand types.

We consider

〈〈σ1, σ2〉, σ3〉 = 〈σ1, 〈σ2, σ3〉〉 = 〈σ1, σ2, σ3〉

〈σ, ǫ〉 = 〈ǫ, σ〉 = σ

. . .

343



Typing rules

344



Typing rules

Tuples
∀1 ≤ i ≤ n · Ψ,Γ ⊢ νi : τi

(T-Tuple)
Ψ,Γ ⊢ 〈ν1, . . . , νn〉 : 〈τ1, . . . , τn〉

344-a



Typing rules

Tuples
∀1 ≤ i ≤ n · Ψ,Γ ⊢ νi : τi

(T-Tuple)
Ψ,Γ ⊢ 〈ν1, . . . , νn〉 : 〈τ1, . . . , τn〉

Ψ,Γ ⊢ h : σ
(T-Uptr)

Ψ,Γ ⊢ uptr(h) : uptr(σ)

344-b



Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,

where now copying of unique pointers should be prevented. Hence we have the

following new rule.
Ψ,Γ ⊢ ν : τ τ 6= uptr(σ)

(T-Mov1)
Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

345



Typing of instructions

The older rules of TAL-0 remain unmodified, except for the Mov instruction,

where now copying of unique pointers should be prevented. Hence we have the

following new rule.
Ψ,Γ ⊢ ν : τ τ 6= uptr(σ)

(T-Mov1)
Ψ ⊢ rd := ν : Γ → Γ ⊕ {rd : τ}

We add new typing rules for the new instructions.
n ≥ 0

(T-Malloc)
Ψ ⊢ rd := malloc n : Γ → Γ ⊕ {rd : uptr〈Int, . . . , Int

︸ ︷︷ ︸

n times

〉}

malloc creates a unique pointer type.

345-a



Ψ,Γ ⊢ rd : uptr(σ) rd 6= sp
(T-Commit)

Ψ ⊢ commit rd : Γ → Γ ⊕ {rd : ptr(σ)}

commit creates a shared pointer type.

rd stores a (label) pointer to the value which has now been moved into the

heap.

346



Ψ,Γ ⊢ rs : ptr〈τ0, . . . , τn, σ〉
(T-Ld-S)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

347



Ψ,Γ ⊢ rs : ptr〈τ0, . . . , τn, σ〉
(T-Ld-S)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

Ψ,Γ ⊢ rs : uptr〈τ0, . . . , τn, σ〉
(T-Ld-U)

Ψ ⊢ rd := Mem[rs + n] : Γ → Γ ⊕ {rd : τn}

347-a



Ψ,Γ ⊢ rd : ptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τn τn 6= uptr(σ′)
(T-St-S)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ

Updating shared data should not involve a change in type.

348



Ψ,Γ ⊢ rd : ptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τn τn 6= uptr(σ′)
(T-St-S)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ

Updating shared data should not involve a change in type.

Ψ,Γ ⊢ rd : uptr〈τ0, . . . , τn, σ〉 Ψ,Γ ⊢ rs : τ τ 6= uptr(σ′)
(T-St-U)

Ψ ⊢ Mem[rd + n] := rs : Γ → Γ ⊕ {rd : uptr〈τ0, . . . , τn−1, τ , σ〉}

348-a



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

349



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

Ψ,Γ ⊢ sp : uptr〈τ1, . . . , τn, σ〉
(T-Sfree)

Ψ ⊢ sfree n : Γ → Γ ⊕ {sp : uptr(σ)}

349-a



Ψ,Γ ⊢ sp : uptr(σ) n ≥ 0
(T-Salloc)

Ψ ⊢ salloc n : Γ → Γ ⊕ {sp : uptr〈Int, . . . , Int
︸ ︷︷ ︸

n times

, σ〉}

Ψ,Γ ⊢ sp : uptr〈τ1, . . . , τn, σ〉
(T-Sfree)

Ψ ⊢ sfree n : Γ → Γ ⊕ {sp : uptr(σ)}

Stack underflows are ruled out by the type system.

What about stack overflows??

349-b



The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

350



The type system is not powerful enough to keep track of the size of stack.

Hence Code leading to stack overflow will be well-typed, violating safety.

To ensure type safety, we add new evaluation rules in case of stack overflow.

R(sp) = uptr〈ν0, . . . , νp〉 p + n > MaxStack
(E-Overflow1)

(H,R, salloc n; I) → StackOverflow

Where StackOverflow is a new special machine state.

This is similar to ”error” terms in our previous discussion on type safety.

350-a



The rules for typing instruction sequences, register files, heaps and machine

states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

351



The rules for typing instruction sequences, register files, heaps and machine

states are as for TAL-0.

We further require rules for quantifying over allocated type variables, and for

generating instances.

Ψ ⊢ I : τ
(T-Gen)

Ψ ⊢ I : ∀ρ · τ

ρ is an allocated type variable possibly occurring in τ .

Type of labels can be instantiated by the following rule.

We replace occurrences of ρ by any desired type τ ′.

Ψ,Γ ⊢ ν : ∀ρ · τ
(T-Inst)

Ψ,Γ ⊢ ν : τ [ρ 7→ τ ′]

351-a



Example

ret0 : r1 := 0; // return value

sfree 1; // pop argument

jump r3 // return

We would like to assign to this instruction sequence, the type

τ = ∀s · Code{Γ} where

Γ = {sp : uptr〈Int, s〉, r1, r2 : Top, r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top}}

where allocated type variable sp represents an arbitrary chunk of memory.

Let Γ1 = Γ ⊕ {r1 : Int} and Γ2 = Γ1 ⊕ {sp : uptr(s)}.

For any heap type Ψ we have the following typing derivation.

352



·
·
·

Ψ, Γ2 ⊢ r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top} Code(Γ2) ⊑ Code{. . .}
(T-Sub)

Ψ, Γ2 ⊢ r3 : Code(Γ2)
(T-Jump)

Ψ ⊢ jump r3 : Code(Γ2)

353



·
·
·

Ψ, Γ2 ⊢ r3 : Code{sp : uptr(s), r1 : Int, r2, r3 : Top} Code(Γ2) ⊑ Code{. . .}
(T-Sub)

Ψ, Γ2 ⊢ r3 : Code(Γ2)
(T-Jump)

Ψ ⊢ jump r3 : Code(Γ2)

Ψ, Γ1 ⊢ sp : uptr〈Int, s〉
(T-Sfree)

Ψ ⊢ sfree 1 : Γ1 → Γ2

·
·
·

Ψ ⊢ jump r3 : Code(Γ2)
(T-Seq)

Ψ ⊢ sfree 1; jump r3 : Code(Γ1)

·
·
·

Ψ ⊢ r1 := 0 : Γ → Γ1

·
·
·

Ψ ⊢ sfree 1; jump r3 : Code(Γ1)
(T-Seq)

Ψ ⊢ r1 := 0; sfree 1; jump r3 : Code(Γ)
(T-Gen)

Ψ ⊢ r1 := 0; sfree 1; jump r3 : ∀s · Code(Γ)

353-a



Type Safety for TAL-1

Progress: If ⊢ M then there is some M ′ such that M → M ′.

Preservation: If ⊢ M and M → M ′ then either M ′ is StackOverflow, or ⊢ M ′.

354



The Java Security Manager

Allows or disallows various operations.

Various kinds of operations (reading or writing files, connecting to another

machine) requires asking the security manager for permission.

Security managers are objects of the SecurityManager class.

355



public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

356



public class BadClass {

public static void main(String args[]) {

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command successful!

The local file gets deleted, if the user has permissions from the operating

system.

356-a



What if such code is present in some applet loaded by a web-browser?

357



What if such code is present in some applet loaded by a web-browser?

import java.applet.Applet; import java.awt.Graphics;

public class BadApplet extends Applet{

String text;

public void init() {

try { Runtime.getRuntime().exec(”/bin/rm −rf /path/to/filexyz”);

} catch (Exception e) { text = ”Deletion command failed: ” + e; return; }

text = ”Deletion command successful!”;

}

public void paint(Graphics g){ g.drawString(text, 15, 25); }

}

357-a



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

358



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

Loading this page in a web browser shows:

Deletion command failed: java.security .AccessControlException:

access denied (java. io .FilePermission /bin/rm execute)

358-a



This applet is used in the following HTML page.

<html><body>

<applet code=”BadApplet.class” width=750 HEIGHT=50></applet>

</body></html>

Loading this page in a web browser shows:

Deletion command failed: java.security .AccessControlException:

access denied (java. io .FilePermission /bin/rm execute)

The web browser automatically gives restricted permissions to applets.

The sandbox associated with a class depends upon the source from where it

was loaded.

358-b



The typical sequence used for potentially dangerous operations:

• User program makes some request to the Java API.

• The Java API asks the security manager for permissions.

• If the security manager doesn’t want to allow this operation, it throws

back an exception which is thrown back to the user program.

• Otherwise the security manager does nothing and the Java API completes

the operation.

In the previous example, the user program calls the exec method, which calls

the checkExec method on the security manager to check for permission.

359



The code executed on calling exec is similar to this:

public process exec (String command) throws IOException {

...

SecurityManager sm = System.getSecurityManager();

if (sm != null) {

sm.checkExec();

// security exception can be raised here

}

// remaining code follows

...

}

360



Another example: reading files.

// open a file

FileInputStream fis = new FileInputStream (”somefile”);

// read a byte

int x = fis.read();

The code executed on calling FileInputStream is similar to

public FileInputStream (String name) throws FileNotFoundException {

SecurityManager sm = System.getSecurityManager();

if (sm != null) { sm.checkRead(name); }

try { open (name);

} catch (IOException e) {

throw new FileNotFoundException (name);

}

}

361



The System class has various useful data and functions which are global for the

whole virtual machine.

The security manager is obtained by getSecurityManager method, and null is

returned if no security manager has been set.

The security manager is set by setSecurityManager method, and an exception

is raised if the security manager has already been set.

Hence once the security manager has been set, it cannot be modified.

In particular, java applications can set the security manager before executing

remote applets, so that these applets don’t try to set their own security

manager.

362



Defining one’s own security manager: we extend the SecurityManager class and

override the functions as required.

public class NewSecurityManager extends SecurityManager {

public void checkExec (String cmd) {

// always disallow exec

throw new SecurityException (”exec not allowed”)

}

}

363



Modifying the BadClass to use this security manager.

public class NewBadClass {

public static void main(String args[]) {

SecurityManager sm = new NewSecurityManager();

System.setSecurityManager(sm);

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

364



Modifying the BadClass to use this security manager.

public class NewBadClass {

public static void main(String args[]) {

SecurityManager sm = new NewSecurityManager();

System.setSecurityManager(sm);

try {

Runtime.getRuntime().exec (”/bin/rm /path/to/filexyz”);

} catch (Exception e) {

System.out.println (”Deletion command failed: ” + e);

return;

}

System.out.println (”Deletion command successful!”);

}

}

Deletion command failed: java.lang.SecurityException: exec not allowed

364-a



Examples of methods of the security manager.

• checkRead (String file): called e.g. by FileInputStream (String file).

• checkWrite (String file): called by FileOutputStream (String file).

• checkDelete (String file)

365



Examples of methods of the security manager.

• checkRead (String file): called e.g. by FileInputStream (String file).

• checkWrite (String file): called by FileOutputStream (String file).

• checkDelete (String file)

Note that while creating a FileInputStream object requires a checkRead call, the

actual read() operations on the file input stream requires no permission.

• A trusted class can choose to deliver the FileInputStream object to an

untrusted class which can then read from the file.

• It is efficient to check permissions only once.

365-a



The Access Controller

• Has functions similar to the security manager.

• Provides easy enforcement of fine grained security policies.

• The security manager works most of the time by calling the access

controller.

• Implemented by the AccessController class, accessed through its static

methods.

366



Involves the following four classes.

• The CodeSource class: represents the source from which a certain class was

loaded, an an optional list of certificates which was used to sign that code.

• The Permission and Permissions classes: represent various kinds of

permissions.

• The Policy class: a policy maps code source objects to permission objects.

Only one policy can be associated with the JVM at any point of time, like

the security manager. But the policy can be modified.

• The ProtectionDomain class: a protection domain represents all the

permissions granted to a particular code source.

367



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

368



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

Permission objects for accessing files are members of the FilePermission class

(subclass of the Permission class).

• The type is FilePermission.

• The name is the name of the file.

• Possible actions are ”read”, ”write”, ”delete” and ”execute”.

368-a



A permission has three properties:

• A type: what kind of permission is this?

• A name: the object that this permission talks about.

• Actions

Permission objects for accessing files are members of the FilePermission class

(subclass of the Permission class).

• The type is FilePermission.

• The name is the name of the file.

• Possible actions are ”read”, ”write”, ”delete” and ”execute”.

Permission objects are used for requesting permissions as well as for

representing granted permissions.

368-b



The security manager, on receiving the checkExec(”/bin/rm”) call, would

normally construct the following permission object

FilePermission fp = new FilePermission (”/bin/rm”, ”execute”);

and then query the access controller.

AccessController.checkPermission (fp);

369



The security manager, on receiving the checkExec(”/bin/rm”) call, would

normally construct the following permission object

FilePermission fp = new FilePermission (”/bin/rm”, ”execute”);

and then query the access controller.

AccessController.checkPermission (fp);

Other examples:

FilePermission fp1 = new FilePermission (”/bin/∗”, ”execute”);

FilePermission fp2 = new FilePermission (”/home/userx”, ”read, write”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”connect”);

SocketPermission sp1 = new SocketPermission (”hostname:port”, ”accept, listen”);

369-a



Policies are specified by objects of Policy class.

It can be obtained and set using getPolicy () and setPolicy (Policy p).

Policy objects can be created by reading from a file which lists the policy rules.

Typically done at startup time:

java −Djava.security.manager −Djava.security.policy=<policyfilename> <class> <args>

appletviewer −J−Djava.security.policy=<policyfilename> file.html

370



The policy file have rules mapping code sources to sets of permissions.

grant codeBase ”file:/home/userxyz/classes” {

permission java.io.FilePermission ”/bin/rm” ”execute”;

permission java.net.SocketPermission ”localhost:1024−” ”listen, accept”;

};

grant signedBy <signer>, codeBase ”http://www.xyz.com” {

permission ...

...

};

371



A protection domain groups a code source with a set of permissions.

The class loader is supposed to associate a protection domain with a class

when it loads the class.

The protection domain associated with each class is used by the access

controller when it is called to check a permission using the checkPermission()

method.

C3

classes protection domains

permissions

C2

C1

C4

code source CS1

code source CS2

code source CS3

372



Stack inspection

Allowing or disallowing a permission depends on the context in which the

checkPermission method was called.

The access controller needs to examine the protection domains associated with

all the classes on the stack.

The permission is granted only if all the protection domains on the stack have

this permission.

In our old example, the BadClass.main() method for deleting a file calls the

Runtime.exec() method which calls the AccessController.checkPermission() to

check execute permission on /bin/rm.

Further, the BadClass.main() method itself may be called by some other

method m() of class C.

373



We get the following stack.

AccessController.checkPermission()

Runtime.exec()

BadClass.main()

C.m()

. . .

The execute permission should be granted only if all the classes on the stack

have that permission in their protection domain.

Hence the access controller checks that all frames from the top of the stack to

the bottom have this permission in the protection domains of the respective

classes.

374



Sometimes a trusted class may choose to give its permissions to lower frames

on the stack.

E.g. an untrusted applet may call some routine to draw something on the

screen, and the routine requires some local font file.

This is done using the doPrivileged() method.

untrustedclass { f() { ... trustedclass.draw() ...}}

trustedclass {

public void draw {

...

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

// privileged code here

... <read font file> ...

} }); }}

375



Instead of the doPrivileged() method

AccessController.doPrivileged (new PrivilegedAction () {

public Object run () {

<privileged code>

}

});

earlier versions used beginPrivileged() and endPrivileged() calls.

AccessController.beginPrivileged();

<privileged code>

AccessController.endPrivileged();

376



To understand the stack inspection algorithm let us assume the following

operations.

• enablePrivilege(T )

• disablePrivilege(T )

• checkPrivilege(T )

• revertPrivilege(T )

where T is a target (permission in the Java terminology) we wish to protect.

377



Actions taken by these operations:

• enablePrivilege(T ) puts an enabledPrivilege(T ) flag on the current stack

frame if the current class has access to T according to the policy.

• disablePrivilege(T ) puts a disabledPrivilege(T ) flag on the current stack

frame (and removes enabledPrivilege(T ) flag if present).

• revertPrivilege(T ) removes enabledPrivilege(T ) and disabledPrivilege(T ) flags

from the current stack frame if present.

• checkPrivilege(T ) examines the stack as follows . . .

378



checkPrivilege (T) {

for SF from top stack frame to bottom stack frame {

if (policy doesn’t allow the class in SF to access T) throw ForbiddenException;

if (SF has enabledPrivilege (T) flag) return;

if (SF has disabledPrivilege (T) flag) throw ForbiddedException;

}

return; // reached bottom of stack

}

379


