
The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

380

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

380-a

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

380-b

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

– P ∧ Q says s means that both P and Q say s.

380-c

The ABLP Logic Abadi, Burrows, Lampson and Plotkin, 1993

We will model stack inspection using the (subset of) ABLP logic described

below. The language contains

• Principals, modeling persons, organizations as well as cryptographic keys.

• Targets, modeling resources we wish to protect.

• Statements, modeling utterances of principals.

– The statement P says Ok(T) means that the principal P is authorizing

access to target T .

– P | Q says s means P says (Q says s), i.e. P quotes Q as saying s.

– P ∧ Q says s means that both P and Q say s.

– P⇒Q means that P speaks for Q, i.e. P has at least as much authority

as Q.

380-d

We assume a set of atomic statements and atomic principals.

principal P ::=

AtomicPrincipal

P1 ∧ P2

P1 | P2

statement s ::=

AtomicStatement

s1 ∧ s2

s1→s2

P says s1

P1⇒P2

381

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

382

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

382-a

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

382-b

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

Intuitively, from s1 ∧ s2 ∧ s3 we should be able to prove s.

382-c

Example Given some s we define following new statements.

s1 ≡ (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

Alice and Bob declare Charlie to be their representative.

s2 ≡ Charlie | Alice says s

Charlie quotes Alice as saying s.

s3 ≡ (Alice says s)→s

If Alice says s then it must be true.

Intuitively, from s1 ∧ s2 ∧ s3 we should be able to prove s.

For this we require certain rules (axioms) for making proofs.

382-d

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

383

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

383-a

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

The ABLP statement

(P says s) ∧ ((P says s)→s)→s

is an instance of the propositional logic statement

(X ∧ (X→Y))→Y

383-b

Axioms about statements

1 If s is an instance of a theorem of propositional logic then s is true in

ABLP logic.

E.g. the ABLP statement

(P says s)→(P says s)

is an instance of the propositional logic statement

X→X

The ABLP statement

(P says s) ∧ ((P says s)→s)→s

is an instance of the propositional logic statement

(X ∧ (X→Y))→Y

Hence both ABLP statements are true.

383-c

2 If s and s→s′ then s′.

384

2 If s and s→s′ then s′.

3 (P says s ∧ P says (s→s′))→P says s′

We can draw conclusions from statements made by principals.

384-a

2 If s and s→s′ then s′.

3 (P says s ∧ P says (s→s′))→P says s′

We can draw conclusions from statements made by principals.

4 If s then P says s for every principal P .

True ABLP statements are supported by all principals.

384-b

Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

385

Example

Given statement Alice says (s1 ∧ s2) how do we conclude that Alice says s1.

We use the following steps.

(s1 ∧ s2)→s1 by (1)

Alice says ((s1 ∧ s2)→s1) by (4)

Alice says s1 by (3)

385-a

Axioms about principals

5 (P ∧ Q) says s ≡ (P says s) ∧ (Q says s)

6 (P | Q) says s ≡ P says (Q says s)

7 (P = Q)→(P says s ≡ Q says s)

= is equality on principals.

8 (P1 | (P2 | P3)) = ((P1 | P2) | P3)

Quoting is associative.

386

9 (P1 | (P2 ∧ P3)) = (P1 | P2) ∧ (P1 | P3)

Quoting distributes over conjunction

10 (P⇒Q) ≡ (P = P ∧ Q)

11 (P says (Q⇒P))→(Q⇒P)

A principal is free to choose a representative.

387

Example We want to conclude s from the three statements:

– (Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

– Charlie | Alice says s

– (Alice says s)→s

(Alice ∧ Bob) says (Charlie⇒(Alice ∧ Bob))

→(Charlie⇒(Alice ∧ Bob)) by (11)

(Charlie⇒(Alice ∧ Bob)) by (2)

Charlie = (Charlie ∧ Alice ∧ Bob) by (10)

Charlie says (Alice says s) by (6)

(Charlie ∧ Alice ∧ Bob) says (Alice says s) by (7,2)

388

Alice says (Alice says s) by (5,1,2)

Alice says ((Alice says s)→s) by (4)

Alice says s by (3)

s by (2)

389

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

390

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

390-a

Modeling Java stack inspection using ABLP

Wallach, Felten, 1998

Code can be digitally signed by a signer. We treat code, public keys and signers

as principals. Stack frames created during execution of code are also treated as

principals. Targets (resources to be protected) are also treated as principals.

If K is a public key of S then we have the statement

K⇒S (S1)

If some code C was signed and K is the corresponding public key then we have

the statement

K says (C⇒K) (S2)

390-b

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

391

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

391-a

If F is the stack frame generated for executing code C then we have the

statement

F⇒C (S3)

Frame credentials Φ = set of all valid statements of the form S1,S2 and S3.

Note that from K says (C⇒K) using (11) we can conclude C⇒K.

Further we can show transitivity of ⇒: given A⇒B and B⇒C we have:

A = A ∧ B by (10)

B = B ∧ C by (10)

Hence A = A ∧ B ∧ C = A ∧ C

Hence we have A⇒C

Hence from S1, S2 and S3 we can conclude F⇒S.

391-b

For each target T we treat Ok(T) as an atomic statement.

It means that access to T is permitted.

We consider the axiom

(T says Ok(T))→Ok(T) (S4)

A target is always free to grant permission to itself.

Targets are dummy principals. They never speak, but other (non-dummy)

principals representing them may speak for them.

Target credentials T is the set of such axioms for all targets T .

392

Policy for a virtual machine M is defined by a set

access credentials AM of statements of the form P⇒T where P is a principal

and T is a target.

This rule means that the local policy of virtual machine M allows P to access

T .

393

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

394

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

394-a

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

394-b

Stacks

During execution, at any point of time, a stack frame F has a belief set BF

This is updated as follows.

Starting the program For the initial stack frame F0

BF0
= {Ok(T) | T is a target}.

Enabling privileges

If stack frame F calls enablePrivilege(T) then we update: BF := BF ∪{Ok(T)}.

Function calls

Function call from stack frame F creates a new stack frame G.

BG = {F says s | s ∈ BF }.

394-c

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

395

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

395-a

Disabling privileges

If stack frame F calls disablePrivilege(T) then we update

BF := BF \ {s | Ok(T) occurs in s}

Reverting privileges

If stack frame F calls revertPrivilege(T) then we update BF := BF \ {Ok(T)}

Checking privileges

When F calls checkPrivilege(T) then we check that Ok(T) can be concluded

from the set

Φ ∪ T ∪ AM ∪ {F says s | s ∈ BF }.

395-b

Example Assume at the beginning that BF1
= {}.

Now F1 calls enablePrivilege(T1). We have BF1
= {Ok(T1)}.

F1 calls checkPrivilege(T1).

Hence we take the statement F1 says Ok(T1).

Let S1 be the signer of the code which produced the frame F1.

Then we conclude F1⇒S1 from the frame credentials Φ.

If the access credentials set AM has a statement S1⇒T1

then using the statement (T1 says Ok(T1))→Ok(T1) from T

we conclude Ok(T1).

396

Now F1 makes a function call and the new frame F2 calls enablePrivilege(T2).

We have BF2
= {F1 says Ok(T1),Ok(T2)}

F2 makes function call and the new frame F3 calls disablePrivilege(T1).

We have BF3
= {F2 says Ok(T2)}.

F3 makes function call and the new frame F4 calls enablePrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2),Ok(T2)}.

F4 calls revertPrivilege(T2).

We have BF4
= {(F3 | F2) says Ok(T2)}.

397

Now F4 calls checkPrivilegeT2.

We take the statement (F4 | F3 | F2) says Ok(T2) i.e.

F4 says (F3 says (F2 says Ok(T2))).

Suppose from the frame credentials Φ imply that

F4⇒S4 F3⇒S3 F2⇒S2

Suppose that AM further has statements

S4⇒T2 S3⇒T2 S2⇒T2

Then we conclude:

T2 says (F3 says (F2 says Ok(T2)))

T2 says (T2 says (F2 says Ok(T2)))

398

T2 says (T2 says (T2 says Ok(T2)))

Further (T2 says Ok(T2))→Ok(T2) is in T .

Hence T2 says (T2 says ((T2 says Ok(T2))→Ok(T2))).

Hence T2 says (T2 says Ok(T2)).

Similarly T2 says Ok(T2).

Hence Ok(T2).

399

